The use of heat circulator for flammability in mesoscale combustor
The mesoscale combustor is a part of the micropower electric generator. The function of the mesoscale combustor is to convert hydrocarbon to become thermal energy through combustion reaction. It is difficult to maintain the flame stability of a mesoscale combustor due to its millimetre-scale size....
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PC Technology Center
2019-04-01
|
Series: | Eastern-European Journal of Enterprise Technologies |
Subjects: | |
Online Access: | http://journals.uran.ua/eejet/article/view/155347 |
Summary: | The mesoscale combustor is a part of the micropower electric generator. The function of the mesoscale combustor is to convert hydrocarbon to become thermal energy through combustion reaction. It is difficult to maintain the flame stability of a mesoscale combustor due to its millimetre-scale size.
This study aims to determine the performance and recognize mesoscale combustor phenomena that have stainless steel heat recirculators. This study is to test the combustion characteristics of liquid and gas fuels in meso-combustors which use heat recirculator. The heat circulator is made of stainless steel tube with an inner diameter of 3.5. The parameters observed were flammability limits, temperature distribution and flame visualization.
It is confirmed that the stainless steel heat recirculator, is useful for liquid fuel preheating and evaporating inside of mesoscale combustor. The flame of liquid fuels can be stabilized at an equivalence ratio of 0.9 to 1.25, and up to about 900 centigrade Celsius. Thus recommend for liquid fuel micropower generator. It is noted that when the heat recirculator is too close to the flame, excessive flame cooling occurs and causes the flame extinguished. The meso-combustor, which has no heat recirculator, and designed for gas fuel only, can stabilize flame at an equivalence ratio of 0.7 to 1.5. It is also confirmed that the inaccurate selection of the material of thermal recirculator risks reducing the flame stability. It is important to note that when the gas fuel exits the storage tube, there is an expansion and a decrease in temperature which can affect flammability limits |
---|---|
ISSN: | 1729-3774 1729-4061 |