Single Trial Classification of Evoked EEG Signals Due to RGB Colors

<p>Recently, the impact of colors on the brain signals has become one of the leading researches in BCI systems. These researches are based on studying the brain behavior after color stimulus, and finding a way to classify its signals offline without considering the real time. Moving to the nex...

Full description

Bibliographic Details
Main Authors: Eman Alharbi, Saim Rasheed, Seyed Buhari
Format: Article
Language:English
Published: EduSoft publishing 2016-03-01
Series:Brain: Broad Research in Artificial Intelligence and Neuroscience
Subjects:
Online Access:http://www.edusoft.ro/brain/index.php/brain/article/view/568
id doaj-d6b1f4c804a1442dadabac88b47746cc
record_format Article
spelling doaj-d6b1f4c804a1442dadabac88b47746cc2020-11-24T22:43:35ZengEduSoft publishingBrain: Broad Research in Artificial Intelligence and Neuroscience2068-04732067-39572016-03-01712941421Single Trial Classification of Evoked EEG Signals Due to RGB ColorsEman Alharbi0Saim Rasheed1Seyed Buhari2King Abdulaziz UniversityKing Abdulaziz UniversityKing Abdulaziz University<p>Recently, the impact of colors on the brain signals has become one of the leading researches in BCI systems. These researches are based on studying the brain behavior after color stimulus, and finding a way to classify its signals offline without considering the real time. Moving to the next step, we present a real time classification model (online) for EEG signals evoked by RGB colors stimuli, which is not presented in previous studies. In this research, EEG signals were recorded from 7 subjects through BCI2000 toolbox. The Empirical Mode Decomposition (EMD) technique was used at the signal analysis stage. Various feature extraction methods were investigated to find the best and reliable set, including Event-related spectral perturbations (ERSP), Target mean with Feast Fourier Transform (FFT), Wavelet Packet Decomposition (WPD), Auto Regressive model (AR) and EMD residual. A new feature selection method was created based on the peak's time of EEG signal when red and blue colors stimuli are presented. The ERP image was used to find out the peak's time, which was around 300 ms for the red color and around 450 ms for the blue color. The classification was performed using the Support Vector Machine (SVM) classifier, LIBSVM toolbox being used for that purpose. The EMD residual was found to be the most reliable method that gives the highest classification accuracy with an average of 88.5% and with an execution time of only 14 seconds.</p>http://www.edusoft.ro/brain/index.php/brain/article/view/568Brain Computer Interface (BCI), Electroenphesalography (EEG), Event Related Potintials, component (ERP)Emperical Mode Decomposition (EMD), Event-related spectral perturbations (ERSP), Wavelet Packet Decomposition (WPD), Autoregrissive (AR), Fast Fourier
collection DOAJ
language English
format Article
sources DOAJ
author Eman Alharbi
Saim Rasheed
Seyed Buhari
spellingShingle Eman Alharbi
Saim Rasheed
Seyed Buhari
Single Trial Classification of Evoked EEG Signals Due to RGB Colors
Brain: Broad Research in Artificial Intelligence and Neuroscience
Brain Computer Interface (BCI), Electroenphesalography (EEG), Event Related Potintials, component (ERP)
Emperical Mode Decomposition (EMD), Event-related spectral perturbations (ERSP), Wavelet Packet Decomposition (WPD), Autoregrissive (AR), Fast Fourier
author_facet Eman Alharbi
Saim Rasheed
Seyed Buhari
author_sort Eman Alharbi
title Single Trial Classification of Evoked EEG Signals Due to RGB Colors
title_short Single Trial Classification of Evoked EEG Signals Due to RGB Colors
title_full Single Trial Classification of Evoked EEG Signals Due to RGB Colors
title_fullStr Single Trial Classification of Evoked EEG Signals Due to RGB Colors
title_full_unstemmed Single Trial Classification of Evoked EEG Signals Due to RGB Colors
title_sort single trial classification of evoked eeg signals due to rgb colors
publisher EduSoft publishing
series Brain: Broad Research in Artificial Intelligence and Neuroscience
issn 2068-0473
2067-3957
publishDate 2016-03-01
description <p>Recently, the impact of colors on the brain signals has become one of the leading researches in BCI systems. These researches are based on studying the brain behavior after color stimulus, and finding a way to classify its signals offline without considering the real time. Moving to the next step, we present a real time classification model (online) for EEG signals evoked by RGB colors stimuli, which is not presented in previous studies. In this research, EEG signals were recorded from 7 subjects through BCI2000 toolbox. The Empirical Mode Decomposition (EMD) technique was used at the signal analysis stage. Various feature extraction methods were investigated to find the best and reliable set, including Event-related spectral perturbations (ERSP), Target mean with Feast Fourier Transform (FFT), Wavelet Packet Decomposition (WPD), Auto Regressive model (AR) and EMD residual. A new feature selection method was created based on the peak's time of EEG signal when red and blue colors stimuli are presented. The ERP image was used to find out the peak's time, which was around 300 ms for the red color and around 450 ms for the blue color. The classification was performed using the Support Vector Machine (SVM) classifier, LIBSVM toolbox being used for that purpose. The EMD residual was found to be the most reliable method that gives the highest classification accuracy with an average of 88.5% and with an execution time of only 14 seconds.</p>
topic Brain Computer Interface (BCI), Electroenphesalography (EEG), Event Related Potintials, component (ERP)
Emperical Mode Decomposition (EMD), Event-related spectral perturbations (ERSP), Wavelet Packet Decomposition (WPD), Autoregrissive (AR), Fast Fourier
url http://www.edusoft.ro/brain/index.php/brain/article/view/568
work_keys_str_mv AT emanalharbi singletrialclassificationofevokedeegsignalsduetorgbcolors
AT saimrasheed singletrialclassificationofevokedeegsignalsduetorgbcolors
AT seyedbuhari singletrialclassificationofevokedeegsignalsduetorgbcolors
_version_ 1725695083144019968