Almost Complex Surfaces in the Nearly Kähler <b><i>SL</i></b>(<b>2</b>,ℝ) × <b><i>SL</i></b>(<b>2</b>,ℝ)
The space <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>L</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="double-struck">R</mi> <mo>)</mo&g...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/7/1160 |
id |
doaj-d6a46183ddf945aba23a3af2fcd3ca52 |
---|---|
record_format |
Article |
spelling |
doaj-d6a46183ddf945aba23a3af2fcd3ca522020-11-25T02:59:53ZengMDPI AGMathematics2227-73902020-07-0181160116010.3390/math8071160Almost Complex Surfaces in the Nearly Kähler <b><i>SL</i></b>(<b>2</b>,ℝ) × <b><i>SL</i></b>(<b>2</b>,ℝ)Elsa Ghandour0Luc Vrancken1Faculty of Science, University of Lund, Box 118, 2210 Lund, SwedenLMI-Laboratoire de Mathématiques pour l’Ingénieur, Université Polytechnique Hauts-de-France, Campus du Mont Houy, 59313 Valenciennes, FranceThe space <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>L</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="double-struck">R</mi> <mo>)</mo> <mo>×</mo> <mi>S</mi> <mi>L</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="double-struck">R</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> admits a natural homogeneous pseudo-Riemannian nearly Kähler structure. We investigate almost complex surfaces in this space. In particular, we obtain a complete classification of the totally geodesic almost complex surfaces and of the almost complex surfaces with parallel second fundamental form.https://www.mdpi.com/2227-7390/8/7/1160submanifold theorynearly Kähleralmost complex surface |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Elsa Ghandour Luc Vrancken |
spellingShingle |
Elsa Ghandour Luc Vrancken Almost Complex Surfaces in the Nearly Kähler <b><i>SL</i></b>(<b>2</b>,ℝ) × <b><i>SL</i></b>(<b>2</b>,ℝ) Mathematics submanifold theory nearly Kähler almost complex surface |
author_facet |
Elsa Ghandour Luc Vrancken |
author_sort |
Elsa Ghandour |
title |
Almost Complex Surfaces in the Nearly Kähler <b><i>SL</i></b>(<b>2</b>,ℝ) × <b><i>SL</i></b>(<b>2</b>,ℝ) |
title_short |
Almost Complex Surfaces in the Nearly Kähler <b><i>SL</i></b>(<b>2</b>,ℝ) × <b><i>SL</i></b>(<b>2</b>,ℝ) |
title_full |
Almost Complex Surfaces in the Nearly Kähler <b><i>SL</i></b>(<b>2</b>,ℝ) × <b><i>SL</i></b>(<b>2</b>,ℝ) |
title_fullStr |
Almost Complex Surfaces in the Nearly Kähler <b><i>SL</i></b>(<b>2</b>,ℝ) × <b><i>SL</i></b>(<b>2</b>,ℝ) |
title_full_unstemmed |
Almost Complex Surfaces in the Nearly Kähler <b><i>SL</i></b>(<b>2</b>,ℝ) × <b><i>SL</i></b>(<b>2</b>,ℝ) |
title_sort |
almost complex surfaces in the nearly kähler <b><i>sl</i></b>(<b>2</b>,ℝ) × <b><i>sl</i></b>(<b>2</b>,ℝ) |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-07-01 |
description |
The space <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>L</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="double-struck">R</mi> <mo>)</mo> <mo>×</mo> <mi>S</mi> <mi>L</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="double-struck">R</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> admits a natural homogeneous pseudo-Riemannian nearly Kähler structure. We investigate almost complex surfaces in this space. In particular, we obtain a complete classification of the totally geodesic almost complex surfaces and of the almost complex surfaces with parallel second fundamental form. |
topic |
submanifold theory nearly Kähler almost complex surface |
url |
https://www.mdpi.com/2227-7390/8/7/1160 |
work_keys_str_mv |
AT elsaghandour almostcomplexsurfacesinthenearlykahlerbislibb2brbislibb2br AT lucvrancken almostcomplexsurfacesinthenearlykahlerbislibb2brbislibb2br |
_version_ |
1724700472363712512 |