A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons
The aim of this paper is to compare selected iterative algorithms for inconsistency reduction in pairwise comparisons by Monte Carlo simulations. We perform simulations for pairwise comparison matrices of the order <inline-formula> <tex-math notation="LaTeX">$n = 4 $ </tex-m...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9408608/ |
id |
doaj-d69784b9b36e44fdb5963d2559191c25 |
---|---|
record_format |
Article |
spelling |
doaj-d69784b9b36e44fdb5963d2559191c252021-04-29T23:00:27ZengIEEEIEEE Access2169-35362021-01-019625536256110.1109/ACCESS.2021.30742749408608A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise ComparisonsJiri Mazurek0https://orcid.org/0000-0002-7965-0457Radomir Perzina1https://orcid.org/0000-0002-5822-3982Dominik Strzalka2https://orcid.org/0000-0002-8887-4321Bartosz Kowal3https://orcid.org/0000-0002-7909-6484Pawel Kuras4https://orcid.org/0000-0002-8658-0821School of Business Administration in Karvina, Silesian University in Opava, Karvina, Czech RepublicSchool of Business Administration in Karvina, Silesian University in Opava, Karvina, Czech RepublicDepartment of Complex Systems, Rzeszów University of Technology, Rzeszów, PolandDepartment of Complex Systems, Rzeszów University of Technology, Rzeszów, PolandDepartment of Complex Systems, Rzeszów University of Technology, Rzeszów, PolandThe aim of this paper is to compare selected iterative algorithms for inconsistency reduction in pairwise comparisons by Monte Carlo simulations. We perform simulations for pairwise comparison matrices of the order <inline-formula> <tex-math notation="LaTeX">$n = 4 $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$n = 8 $ </tex-math></inline-formula> with the initial inconsistency <inline-formula> <tex-math notation="LaTeX">$0.10 < CR < 0.80 $ </tex-math></inline-formula> and entries drawn from Saaty’s fundamental scale. Subsequently, we evaluate the algorithms’ performance with respect to four measures that express the degree of original preference preservation. Our results indicate that no algorithm outperforms all other algorithms with respect to every measure of preference preservation. The Xu and Wei’s algorithm is the best with regard to the preservation of an original priority vector and the ranking of objects, the Step-by-Step algorithm best preserves the original preferences expressed in the form of a pairwise comparison matrix, and the algorithm of Szybowski keeps the most matrix entries unchanged during inconsistency reduction.https://ieeexplore.ieee.org/document/9408608/Algorithmconsistencyinconsistency reductionpairwise comparisons |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jiri Mazurek Radomir Perzina Dominik Strzalka Bartosz Kowal Pawel Kuras |
spellingShingle |
Jiri Mazurek Radomir Perzina Dominik Strzalka Bartosz Kowal Pawel Kuras A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons IEEE Access Algorithm consistency inconsistency reduction pairwise comparisons |
author_facet |
Jiri Mazurek Radomir Perzina Dominik Strzalka Bartosz Kowal Pawel Kuras |
author_sort |
Jiri Mazurek |
title |
A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons |
title_short |
A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons |
title_full |
A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons |
title_fullStr |
A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons |
title_full_unstemmed |
A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons |
title_sort |
numerical comparison of iterative algorithms for inconsistency reduction in pairwise comparisons |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2021-01-01 |
description |
The aim of this paper is to compare selected iterative algorithms for inconsistency reduction in pairwise comparisons by Monte Carlo simulations. We perform simulations for pairwise comparison matrices of the order <inline-formula> <tex-math notation="LaTeX">$n = 4 $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$n = 8 $ </tex-math></inline-formula> with the initial inconsistency <inline-formula> <tex-math notation="LaTeX">$0.10 < CR < 0.80 $ </tex-math></inline-formula> and entries drawn from Saaty’s fundamental scale. Subsequently, we evaluate the algorithms’ performance with respect to four measures that express the degree of original preference preservation. Our results indicate that no algorithm outperforms all other algorithms with respect to every measure of preference preservation. The Xu and Wei’s algorithm is the best with regard to the preservation of an original priority vector and the ranking of objects, the Step-by-Step algorithm best preserves the original preferences expressed in the form of a pairwise comparison matrix, and the algorithm of Szybowski keeps the most matrix entries unchanged during inconsistency reduction. |
topic |
Algorithm consistency inconsistency reduction pairwise comparisons |
url |
https://ieeexplore.ieee.org/document/9408608/ |
work_keys_str_mv |
AT jirimazurek anumericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons AT radomirperzina anumericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons AT dominikstrzalka anumericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons AT bartoszkowal anumericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons AT pawelkuras anumericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons AT jirimazurek numericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons AT radomirperzina numericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons AT dominikstrzalka numericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons AT bartoszkowal numericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons AT pawelkuras numericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons |
_version_ |
1721500367441625088 |