A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons

The aim of this paper is to compare selected iterative algorithms for inconsistency reduction in pairwise comparisons by Monte Carlo simulations. We perform simulations for pairwise comparison matrices of the order <inline-formula> <tex-math notation="LaTeX">$n = 4 $ </tex-m...

Full description

Bibliographic Details
Main Authors: Jiri Mazurek, Radomir Perzina, Dominik Strzalka, Bartosz Kowal, Pawel Kuras
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9408608/
id doaj-d69784b9b36e44fdb5963d2559191c25
record_format Article
spelling doaj-d69784b9b36e44fdb5963d2559191c252021-04-29T23:00:27ZengIEEEIEEE Access2169-35362021-01-019625536256110.1109/ACCESS.2021.30742749408608A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise ComparisonsJiri Mazurek0https://orcid.org/0000-0002-7965-0457Radomir Perzina1https://orcid.org/0000-0002-5822-3982Dominik Strzalka2https://orcid.org/0000-0002-8887-4321Bartosz Kowal3https://orcid.org/0000-0002-7909-6484Pawel Kuras4https://orcid.org/0000-0002-8658-0821School of Business Administration in Karvina, Silesian University in Opava, Karvina, Czech RepublicSchool of Business Administration in Karvina, Silesian University in Opava, Karvina, Czech RepublicDepartment of Complex Systems, Rzesz&#x00F3;w University of Technology, Rzesz&#x00F3;w, PolandDepartment of Complex Systems, Rzesz&#x00F3;w University of Technology, Rzesz&#x00F3;w, PolandDepartment of Complex Systems, Rzesz&#x00F3;w University of Technology, Rzesz&#x00F3;w, PolandThe aim of this paper is to compare selected iterative algorithms for inconsistency reduction in pairwise comparisons by Monte Carlo simulations. We perform simulations for pairwise comparison matrices of the order <inline-formula> <tex-math notation="LaTeX">$n = 4 $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$n = 8 $ </tex-math></inline-formula> with the initial inconsistency <inline-formula> <tex-math notation="LaTeX">$0.10 &lt; CR &lt; 0.80 $ </tex-math></inline-formula> and entries drawn from Saaty&#x2019;s fundamental scale. Subsequently, we evaluate the algorithms&#x2019; performance with respect to four measures that express the degree of original preference preservation. Our results indicate that no algorithm outperforms all other algorithms with respect to every measure of preference preservation. The Xu and Wei&#x2019;s algorithm is the best with regard to the preservation of an original priority vector and the ranking of objects, the Step-by-Step algorithm best preserves the original preferences expressed in the form of a pairwise comparison matrix, and the algorithm of Szybowski keeps the most matrix entries unchanged during inconsistency reduction.https://ieeexplore.ieee.org/document/9408608/Algorithmconsistencyinconsistency reductionpairwise comparisons
collection DOAJ
language English
format Article
sources DOAJ
author Jiri Mazurek
Radomir Perzina
Dominik Strzalka
Bartosz Kowal
Pawel Kuras
spellingShingle Jiri Mazurek
Radomir Perzina
Dominik Strzalka
Bartosz Kowal
Pawel Kuras
A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons
IEEE Access
Algorithm
consistency
inconsistency reduction
pairwise comparisons
author_facet Jiri Mazurek
Radomir Perzina
Dominik Strzalka
Bartosz Kowal
Pawel Kuras
author_sort Jiri Mazurek
title A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons
title_short A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons
title_full A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons
title_fullStr A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons
title_full_unstemmed A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons
title_sort numerical comparison of iterative algorithms for inconsistency reduction in pairwise comparisons
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2021-01-01
description The aim of this paper is to compare selected iterative algorithms for inconsistency reduction in pairwise comparisons by Monte Carlo simulations. We perform simulations for pairwise comparison matrices of the order <inline-formula> <tex-math notation="LaTeX">$n = 4 $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$n = 8 $ </tex-math></inline-formula> with the initial inconsistency <inline-formula> <tex-math notation="LaTeX">$0.10 &lt; CR &lt; 0.80 $ </tex-math></inline-formula> and entries drawn from Saaty&#x2019;s fundamental scale. Subsequently, we evaluate the algorithms&#x2019; performance with respect to four measures that express the degree of original preference preservation. Our results indicate that no algorithm outperforms all other algorithms with respect to every measure of preference preservation. The Xu and Wei&#x2019;s algorithm is the best with regard to the preservation of an original priority vector and the ranking of objects, the Step-by-Step algorithm best preserves the original preferences expressed in the form of a pairwise comparison matrix, and the algorithm of Szybowski keeps the most matrix entries unchanged during inconsistency reduction.
topic Algorithm
consistency
inconsistency reduction
pairwise comparisons
url https://ieeexplore.ieee.org/document/9408608/
work_keys_str_mv AT jirimazurek anumericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons
AT radomirperzina anumericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons
AT dominikstrzalka anumericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons
AT bartoszkowal anumericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons
AT pawelkuras anumericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons
AT jirimazurek numericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons
AT radomirperzina numericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons
AT dominikstrzalka numericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons
AT bartoszkowal numericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons
AT pawelkuras numericalcomparisonofiterativealgorithmsforinconsistencyreductioninpairwisecomparisons
_version_ 1721500367441625088