Dynamics and bifurcation analysis of a state-dependent impulsive SIS model

Abstract Recently, considering the susceptible population size-guided implementations of control measures, several modelling studies investigated the global dynamics and bifurcation phenomena of the state-dependent impulsive SIR models. In this study, we propose a state-dependent impulsive model bas...

Full description

Bibliographic Details
Main Author: Jinyan Wang
Format: Article
Language:English
Published: SpringerOpen 2021-06-01
Series:Advances in Difference Equations
Subjects:
Online Access:https://doi.org/10.1186/s13662-021-03436-3
Description
Summary:Abstract Recently, considering the susceptible population size-guided implementations of control measures, several modelling studies investigated the global dynamics and bifurcation phenomena of the state-dependent impulsive SIR models. In this study, we propose a state-dependent impulsive model based on the SIS model. We firstly recall the complicated dynamics of the ODE system with saturated treatment. Based on the dynamics of the ODE system, we firstly discuss the existence and the stability of the semi-trivial periodic solution. Then, based on the definition of the Poincaré map and its properties, we systematically investigate the bifurcations near the semi-trivial periodic solution with all the key control parameters; consequently, we prove the existence and stability of the positive periodic solutions.
ISSN:1687-1847