A New Generalization of Weighted Geometric Distribution and its Properties
Discrete distributions are widely used to model lifetime for count data. In this paper we introduce a new generalization of weighted geometric (GWG) distribution with the weight function w(x) = (1−p^{αx})^β whose special case proposes a discrete generalized weighted exponential distribution. Further...
Main Authors: | H. Najarzadegan, M. H. Alamatsaz |
---|---|
Format: | Article |
Language: | English |
Published: |
Atlantis Press
2017-11-01
|
Series: | Journal of Statistical Theory and Applications (JSTA) |
Subjects: | |
Online Access: | https://www.atlantis-press.com/article/25887940.pdf |
Similar Items
-
Some Properties of Gamma Generated Distributions
by: Manisha Pal, et al.
Published: (2015-12-01) -
Statistical properties and different methods of estimation for extended weighted inverted Rayleigh distribution
by: Abhimanyu Singh Yadav, et al.
Published: (2020-06-01) -
Generalized Order Statistics from Marshall–Olkin Extended Exponential Distribution
by: Haseeb Athar, et al.
Published: (2019-06-01) -
Special cases in order statistics for the alternative parametrization of the Generalized Power Function Distribution
by: Alya O. Al Mutairi, et al.
Published: (2018-05-01) -
A New Quasi Sujatha Distribution
by: Rama Shanker, et al.
Published: (2020-09-01)