Life Cycle Costs and Life Cycle Assessment for the Harvesting, Conversion, and the Use of Switchgrass to Produce Electricity

This paper considers both LCA and LCC of the pyrolysis of switchgrass to use as an energy source in a conventional power plant. The process consists of cultivation, harvesting, transportation, storage, pyrolysis, transportation, and power generation. Here pyrolysis oil is converted to electric power...

Full description

Bibliographic Details
Main Authors: Nuttapol Lerkkasemsan, Luke E. K. Achenie
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:International Journal of Chemical Engineering
Online Access:http://dx.doi.org/10.1155/2013/492058
id doaj-d66846d3558c420faef5ccc1b7c85f23
record_format Article
spelling doaj-d66846d3558c420faef5ccc1b7c85f232021-07-02T05:50:52ZengHindawi LimitedInternational Journal of Chemical Engineering1687-806X1687-80782013-01-01201310.1155/2013/492058492058Life Cycle Costs and Life Cycle Assessment for the Harvesting, Conversion, and the Use of Switchgrass to Produce ElectricityNuttapol Lerkkasemsan0Luke E. K. Achenie1Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0002, USADepartment of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0002, USAThis paper considers both LCA and LCC of the pyrolysis of switchgrass to use as an energy source in a conventional power plant. The process consists of cultivation, harvesting, transportation, storage, pyrolysis, transportation, and power generation. Here pyrolysis oil is converted to electric power through cocombustion in conventional fossil fuel power plants. Several scenarios are conducted to determine the effect of selected design variables on the production of pyrolysis oil and type of conventional power plants. The set of design variables consist of land fraction, land shape, the distance needed to transport switchgrass to the pyrolysis plant, the distance needed to transport pyrolysis oil to electric generation plant, and the pyrolysis plant capacity. Using an average agriculture land fraction of the United States at 0.4, the estimated cost of electricity from pyrolysis of 5000 tons of switchgrass is the lowest at $0.12 per kwh. Using natural gas turbine power plant for electricity generation, the price of electricity can go as low as 7.70 cent/kwh. The main advantage in using a pyrolysis plant is the negative GHG emission from the process which can define that the process is environmentally friendly.http://dx.doi.org/10.1155/2013/492058
collection DOAJ
language English
format Article
sources DOAJ
author Nuttapol Lerkkasemsan
Luke E. K. Achenie
spellingShingle Nuttapol Lerkkasemsan
Luke E. K. Achenie
Life Cycle Costs and Life Cycle Assessment for the Harvesting, Conversion, and the Use of Switchgrass to Produce Electricity
International Journal of Chemical Engineering
author_facet Nuttapol Lerkkasemsan
Luke E. K. Achenie
author_sort Nuttapol Lerkkasemsan
title Life Cycle Costs and Life Cycle Assessment for the Harvesting, Conversion, and the Use of Switchgrass to Produce Electricity
title_short Life Cycle Costs and Life Cycle Assessment for the Harvesting, Conversion, and the Use of Switchgrass to Produce Electricity
title_full Life Cycle Costs and Life Cycle Assessment for the Harvesting, Conversion, and the Use of Switchgrass to Produce Electricity
title_fullStr Life Cycle Costs and Life Cycle Assessment for the Harvesting, Conversion, and the Use of Switchgrass to Produce Electricity
title_full_unstemmed Life Cycle Costs and Life Cycle Assessment for the Harvesting, Conversion, and the Use of Switchgrass to Produce Electricity
title_sort life cycle costs and life cycle assessment for the harvesting, conversion, and the use of switchgrass to produce electricity
publisher Hindawi Limited
series International Journal of Chemical Engineering
issn 1687-806X
1687-8078
publishDate 2013-01-01
description This paper considers both LCA and LCC of the pyrolysis of switchgrass to use as an energy source in a conventional power plant. The process consists of cultivation, harvesting, transportation, storage, pyrolysis, transportation, and power generation. Here pyrolysis oil is converted to electric power through cocombustion in conventional fossil fuel power plants. Several scenarios are conducted to determine the effect of selected design variables on the production of pyrolysis oil and type of conventional power plants. The set of design variables consist of land fraction, land shape, the distance needed to transport switchgrass to the pyrolysis plant, the distance needed to transport pyrolysis oil to electric generation plant, and the pyrolysis plant capacity. Using an average agriculture land fraction of the United States at 0.4, the estimated cost of electricity from pyrolysis of 5000 tons of switchgrass is the lowest at $0.12 per kwh. Using natural gas turbine power plant for electricity generation, the price of electricity can go as low as 7.70 cent/kwh. The main advantage in using a pyrolysis plant is the negative GHG emission from the process which can define that the process is environmentally friendly.
url http://dx.doi.org/10.1155/2013/492058
work_keys_str_mv AT nuttapollerkkasemsan lifecyclecostsandlifecycleassessmentfortheharvestingconversionandtheuseofswitchgrasstoproduceelectricity
AT lukeekachenie lifecyclecostsandlifecycleassessmentfortheharvestingconversionandtheuseofswitchgrasstoproduceelectricity
_version_ 1721338218915299328