Dendritic Nanostructured Waste Copper Wires for High-Energy Alkaline Battery

Abstract Rechargeable alkaline batteries (RABs) have received remarkable attention in the past decade for their high energy, low cost, safe operation, facile manufacture, and eco-friendly nature. To date, expensive electrode materials and current collectors were predominantly applied for RABs, which...

Full description

Bibliographic Details
Main Authors: Nilesh R. Chodankar, Su-Hyeon Ji, Young-Kyu Han, Do-Heyoung Kim
Format: Article
Language:English
Published: SpringerOpen 2019-12-01
Series:Nano-Micro Letters
Subjects:
Online Access:https://doi.org/10.1007/s40820-019-0337-2
Description
Summary:Abstract Rechargeable alkaline batteries (RABs) have received remarkable attention in the past decade for their high energy, low cost, safe operation, facile manufacture, and eco-friendly nature. To date, expensive electrode materials and current collectors were predominantly applied for RABs, which have limited their real-world efficacy. In the present work, we propose a scalable process to utilize electronic waste (e-waste) Cu wires as a cost-effective current collector for high-energy wire-type RABs. Initially, the vertically aligned CuO nanowires were prepared over the waste Cu wires via in situ alkaline corrosion. Then, both atomic-layer-deposited NiO and NiCo-hydroxide were applied to the CuO nanowires to form a uniform dendritic-structured NiCo-hydroxide/NiO/CuO/Cu electrode. When the prepared dendritic-structured electrode was applied to the RAB, it showed excellent electrochemical features, namely high-energy-density (82.42 Wh kg−1), excellent specific capacity (219 mAh g−1), and long-term cycling stability (94% capacity retention over 5000 cycles). The presented approach and material meet the requirements of a cost-effective, abundant, and highly efficient electrode for advanced eco-friendly RABs. More importantly, the present method provides an efficient path to recycle e-waste for value-added energy storage applications.
ISSN:2311-6706
2150-5551