Synergistic combination therapy of lung cancer: Cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin

Lung cancer remains the leading cause of cancer associated deaths worldwide. Recent efforts have been focused on combinational and nanoparticulate therapies that can efficiently deliver multiple therapeutics. Herein, we reported cetuximab (CET) functionalized, paclitaxel (PTX) and 5-Demethylnobileti...

Full description

Bibliographic Details
Main Authors: Shenghu Guo, Yuehua Zhang, Zheng Wu, Lei Zhang, Dongwei He, Xing Li, Zhiyu Wang
Format: Article
Language:English
Published: Elsevier 2019-10-01
Series:Biomedicine & Pharmacotherapy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0753332219322504
Description
Summary:Lung cancer remains the leading cause of cancer associated deaths worldwide. Recent efforts have been focused on combinational and nanoparticulate therapies that can efficiently deliver multiple therapeutics. Herein, we reported cetuximab (CET) functionalized, paclitaxel (PTX) and 5-Demethylnobiletin (DMN) co-loaded nanostructured lipid carriers (NLCs) (CET-PTX/DMN-NLCs). The morphology, particle size, zeta potential, stability and drug release were tested. Cellular uptake, cell viability, synergistic effects and in vivo anti-tumor effects were evaluated on human lung adenocarcinoma cells (A549 cells), human embryonic lung cells (MRC-5 cells) and A549 paclitaxel-resistant cells bearing mice models. NLCs had sizes of around 130 nm and zeta potentials of +20-30 mV. The release of drugs from NLCs was relatively fast at the first 12 h and then became slow until completion of sustained release behavior. Cells uptake of CET-PTX/DMN-NLCs (65.8%) was remarkably higher than that of PTX/DMN-NLCs (35.5%) in A549 cells. The combination treatment with PTX and DMN synergistically decreases the viability of cells than the single PTX-NLCs and DMN-NLCs. CET-PTX/DMN-NLCs exhibited the most remarkable in vivo tumor inhibition efficiency, which suspended the tumor growth from 1010.23 to 211.18 mm3 at the end of the study. The highest tumor accumulation amount and low toxicity made CET-PTX/DMN-NLCs a promising system for the synergistic combination therapy of lung cancer.
ISSN:0753-3322