The Effects of Swiprosin-1 on the Formation of Pseudopodia-Like Structures and β-Adrenoceptor Coupling in Cultured Adult Rat Ventricular Cardiomyocytes.

Recent findings suggest that adult terminally differentiated cardiomyocytes adapt to stress by cellular de- and redifferentiation. In the present study we tested the hypothesis that swiprosin-1 is a key player in this process. Furthermore, the relationship between swiprosin-1 and β-adrenoceptor coup...

Full description

Bibliographic Details
Main Authors: Franziska Nippert, Rolf Schreckenberg, Antonia Hess, Martin Weber, Klaus-Dieter Schlüter
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5161327?pdf=render
Description
Summary:Recent findings suggest that adult terminally differentiated cardiomyocytes adapt to stress by cellular de- and redifferentiation. In the present study we tested the hypothesis that swiprosin-1 is a key player in this process. Furthermore, the relationship between swiprosin-1 and β-adrenoceptor coupling was analyzed.In order to study the function of swiprosin-1 in adult rat ventricular cardiomyocytes (ARVC) they were isolated and cultured in a medium containing 20% fetal calf serum (FCS). Changes in cell morphology of ARVC during cultivation were quantified by light and confocal laser scan microscopy. Small interfering RNA (siRNA) was used to reduce the expression of swiprosin-1. The impact of calcium on swiprosin-1 dependent processes was investigated with Bapta-AM. Immunoblot techniques and qRT-PCR were performed to measure mRNA and protein expression.In culture, ARVC first lost their contractile elements, which was followed by a formation of pseudopodia-like structures (spreading). Swiprosin-1 was detected in ARVC at all time points. However, swiprosin-1 expression was increased when ARVC started to spread. Reduction of swiprosin-1 expression with siRNA delayed ARVC spreading. Similarly, Bapta-AM attenuated swiprosin-1 expression and spreading of ARVC. Furthermore, swiprosin-1 expression correlated with the expression of G protein-coupled receptor kinase 2 (GRK2). Moreover, silencing of swiprosin-1 was associated with a down regulation of GRK2 and caused a sensitization of β-adrenergic receptors.Swiprosin-1 is required for ARVC to adapt to culture conditions. Additionally, it seems to be involved in the desensitization of β-adrenergic receptors. Assuming that ARVC adapt to cardiac stress in a similar way, swiprosin-1 may play a key role in cardiac remodeling.
ISSN:1932-6203