One-step synthesized CuS and MWCNTs composite as a highly efficient counter electrode for quantum dot sensitized solar cells

CuS/MWCNTs counter electrode (CE) in high efficiency and stability is designed that CuS nanoparticles are grown on multi-wall carbon nanotubes (MWCNTs) in solutions to form CuS and MWCNTs composite in treelike structure that dispersed MWCNTs as branches support CuS nano-particles. The quantum dot se...

Full description

Bibliographic Details
Main Authors: Yinan Zhang, Di Wang, Qiming Wang, Wei Zheng
Format: Article
Language:English
Published: Elsevier 2018-12-01
Series:Materials & Design
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127518307779
Description
Summary:CuS/MWCNTs counter electrode (CE) in high efficiency and stability is designed that CuS nanoparticles are grown on multi-wall carbon nanotubes (MWCNTs) in solutions to form CuS and MWCNTs composite in treelike structure that dispersed MWCNTs as branches support CuS nano-particles. The quantum dot sensitized solar cells (QDSCs) are assembled with CuS/MWCNT CE prepared with above composite, CdS and ZnS sensitized TiO2/RGO (reduced graphene oxide) photoanode and polysulfide electrolyte. The electrocatalytic activity of CEs can be analyzed through Nyquist curves and Tafel curves and typical photovoltaic parameters of QDSCs based on different CEs are obtained from J-V curves. CuS nanoparticles aggregate more severely with increase of CuS mass percentage according to TEM images and 100% CuS/MWCNTs CE within all samples exhibits the highest electrocatalytic activity and the power conversion efficiency (PCE) of QDSCs. Besides that, CuS/MWCNT CE exhibits the best photovoltaic stability. PCE of QDSCs with 100% CuS/MWCNTs CE decreases only 3%(from 5.254% to 5.086%) after 24 h illumination. Keywords: CuS/MWCNT CEs, QDSCs, PCE, Electrocatalytic activity, Photovoltaic stability
ISSN:0264-1275