Floor Heave Mechanism of Gob-Side Entry Retaining with Fully-Mechanized Backfilling Mining

Serious floor heave in gob-side entry retaining (GER) with fully-mechanized gangue backfilling mining affects the transportation and ventilation safety of the mine. A theoretical mechanical model for the floor of gob-backfilled GER was established. The effects of the mechanical properties of floor s...

Full description

Bibliographic Details
Main Authors: Peng Gong, Zhanguo Ma, Xiaoyan Ni, Ray Ruichong Zhang
Format: Article
Language:English
Published: MDPI AG 2017-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/10/12/2085
Description
Summary:Serious floor heave in gob-side entry retaining (GER) with fully-mechanized gangue backfilling mining affects the transportation and ventilation safety of the mine. A theoretical mechanical model for the floor of gob-backfilled GER was established. The effects of the mechanical properties of floor strata, the granular compaction of backfilling area (BFA), the vertical support of roadside support body (RSB), and the stress concentration of the solid coal on the floor heave of the gob-backfilled GER were studied. The results show that the floor heave increases with the increase of the coal seam buried depth, and decreases with the increase of the floor rock elastic modulus. The development depth of the plastic zone decreases with the increase of the c and φ value of the floor rock, and increases with the increase of the stress concentration factor of the solid coal. The development depth of the plastic zone in the test mine reached 2.68 m. The field test and monitoring results indicate that the comprehensive control scheme of adjusting backfilling pressure, deep grouting reinforcement, shallow opening stress relief slots, and surface pouring can effectively control the floor heave. The roof-floor displacement is reduced by 73.8% compared to that with the original support scheme. The roadway section meets the design and application requirements when the deformation stabilizes, demonstrating the rationality of the mechanical model. The research results overcome the technical bottleneck of floor heave control of fully-mechanized backfilling GER, providing a reliable basis for the design of a floor heave control scheme.
ISSN:1996-1073