Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves
In this article, the analytical solution of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony equation, Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation and modified Korteweg-de Vries–Zakharov–Kuznetsov equation have been extracted. These results hold numerous traveling wave solutions t...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-01-01
|
Series: | Journal of King Saud University: Science |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1018364717300708 |
id |
doaj-d6124c203ca14ca9afa6d195b652301f |
---|---|
record_format |
Article |
spelling |
doaj-d6124c203ca14ca9afa6d195b652301f2020-11-25T02:42:29ZengElsevierJournal of King Saud University: Science1018-36472019-01-01311813Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water wavesKalim Ul-Haq Tariq0A.R. Seadawy1School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, PR ChinaMathematics Department, Faculty of Science, Taibah University, Al-Ula, Saudi Arabia; Mathematics Department, Faculty of Science, Beni-Suef University, Egypt; Corresponding author at: Mathematics Department, Faculty of Science, Taibah University, Al-Ula, Saudi Arabia.In this article, the analytical solution of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony equation, Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation and modified Korteweg-de Vries–Zakharov–Kuznetsov equation have been extracted. These results hold numerous traveling wave solutions that are of key importance in elucidating some physical circumstance. The technique can also be functional to other sorts of nonlinear evolution equations in contemporary areas of research. Keywords: Korteweg-de Vries Benjamin–Bona–Mahony equation, Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation, Modified Korteweg-de Vries–Zakharov–Kuznetsov equationhttp://www.sciencedirect.com/science/article/pii/S1018364717300708 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kalim Ul-Haq Tariq A.R. Seadawy |
spellingShingle |
Kalim Ul-Haq Tariq A.R. Seadawy Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves Journal of King Saud University: Science |
author_facet |
Kalim Ul-Haq Tariq A.R. Seadawy |
author_sort |
Kalim Ul-Haq Tariq |
title |
Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves |
title_short |
Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves |
title_full |
Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves |
title_fullStr |
Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves |
title_full_unstemmed |
Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves |
title_sort |
soliton solutions of (3 + 1)-dimensional korteweg-de vries benjamin–bona–mahony, kadomtsev–petviashvili benjamin–bona–mahony and modified korteweg de vries–zakharov–kuznetsov equations and their applications in water waves |
publisher |
Elsevier |
series |
Journal of King Saud University: Science |
issn |
1018-3647 |
publishDate |
2019-01-01 |
description |
In this article, the analytical solution of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony equation, Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation and modified Korteweg-de Vries–Zakharov–Kuznetsov equation have been extracted. These results hold numerous traveling wave solutions that are of key importance in elucidating some physical circumstance. The technique can also be functional to other sorts of nonlinear evolution equations in contemporary areas of research. Keywords: Korteweg-de Vries Benjamin–Bona–Mahony equation, Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation, Modified Korteweg-de Vries–Zakharov–Kuznetsov equation |
url |
http://www.sciencedirect.com/science/article/pii/S1018364717300708 |
work_keys_str_mv |
AT kalimulhaqtariq solitonsolutionsof31dimensionalkortewegdevriesbenjaminbonamahonykadomtsevpetviashvilibenjaminbonamahonyandmodifiedkortewegdevrieszakharovkuznetsovequationsandtheirapplicationsinwaterwaves AT arseadawy solitonsolutionsof31dimensionalkortewegdevriesbenjaminbonamahonykadomtsevpetviashvilibenjaminbonamahonyandmodifiedkortewegdevrieszakharovkuznetsovequationsandtheirapplicationsinwaterwaves |
_version_ |
1724773537064943616 |