Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves

In this article, the analytical solution of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony equation, Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation and modified Korteweg-de Vries–Zakharov–Kuznetsov equation have been extracted. These results hold numerous traveling wave solutions t...

Full description

Bibliographic Details
Main Authors: Kalim Ul-Haq Tariq, A.R. Seadawy
Format: Article
Language:English
Published: Elsevier 2019-01-01
Series:Journal of King Saud University: Science
Online Access:http://www.sciencedirect.com/science/article/pii/S1018364717300708
id doaj-d6124c203ca14ca9afa6d195b652301f
record_format Article
spelling doaj-d6124c203ca14ca9afa6d195b652301f2020-11-25T02:42:29ZengElsevierJournal of King Saud University: Science1018-36472019-01-01311813Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water wavesKalim Ul-Haq Tariq0A.R. Seadawy1School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, PR ChinaMathematics Department, Faculty of Science, Taibah University, Al-Ula, Saudi Arabia; Mathematics Department, Faculty of Science, Beni-Suef University, Egypt; Corresponding author at: Mathematics Department, Faculty of Science, Taibah University, Al-Ula, Saudi Arabia.In this article, the analytical solution of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony equation, Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation and modified Korteweg-de Vries–Zakharov–Kuznetsov equation have been extracted. These results hold numerous traveling wave solutions that are of key importance in elucidating some physical circumstance. The technique can also be functional to other sorts of nonlinear evolution equations in contemporary areas of research. Keywords: Korteweg-de Vries Benjamin–Bona–Mahony equation, Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation, Modified Korteweg-de Vries–Zakharov–Kuznetsov equationhttp://www.sciencedirect.com/science/article/pii/S1018364717300708
collection DOAJ
language English
format Article
sources DOAJ
author Kalim Ul-Haq Tariq
A.R. Seadawy
spellingShingle Kalim Ul-Haq Tariq
A.R. Seadawy
Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves
Journal of King Saud University: Science
author_facet Kalim Ul-Haq Tariq
A.R. Seadawy
author_sort Kalim Ul-Haq Tariq
title Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves
title_short Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves
title_full Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves
title_fullStr Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves
title_full_unstemmed Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves
title_sort soliton solutions of (3 + 1)-dimensional korteweg-de vries benjamin–bona–mahony, kadomtsev–petviashvili benjamin–bona–mahony and modified korteweg de vries–zakharov–kuznetsov equations and their applications in water waves
publisher Elsevier
series Journal of King Saud University: Science
issn 1018-3647
publishDate 2019-01-01
description In this article, the analytical solution of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony equation, Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation and modified Korteweg-de Vries–Zakharov–Kuznetsov equation have been extracted. These results hold numerous traveling wave solutions that are of key importance in elucidating some physical circumstance. The technique can also be functional to other sorts of nonlinear evolution equations in contemporary areas of research. Keywords: Korteweg-de Vries Benjamin–Bona–Mahony equation, Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation, Modified Korteweg-de Vries–Zakharov–Kuznetsov equation
url http://www.sciencedirect.com/science/article/pii/S1018364717300708
work_keys_str_mv AT kalimulhaqtariq solitonsolutionsof31dimensionalkortewegdevriesbenjaminbonamahonykadomtsevpetviashvilibenjaminbonamahonyandmodifiedkortewegdevrieszakharovkuznetsovequationsandtheirapplicationsinwaterwaves
AT arseadawy solitonsolutionsof31dimensionalkortewegdevriesbenjaminbonamahonykadomtsevpetviashvilibenjaminbonamahonyandmodifiedkortewegdevrieszakharovkuznetsovequationsandtheirapplicationsinwaterwaves
_version_ 1724773537064943616