Shrinking Projection Method of Common Solutions for Generalized Equilibrium Quasi-<inline-formula> <graphic file="1029-242X-2010-101690-i1.gif"/></inline-formula>-Nonexpansive Mapping and Relatively Nonexpansive Mapping
<p/> <p>We prove a strong convergence theorem for finding a common element of the set of solutions for generalized equilibrium problems, the set of fixed points of a relatively nonexpansive mapping, and the set of fixed points of a quasi-<inline-formula> <graphic file="1029...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2010/101690 |
id |
doaj-d5ecd118cc32426b8951176a8b0845c0 |
---|---|
record_format |
Article |
spelling |
doaj-d5ecd118cc32426b8951176a8b0845c02020-11-24T21:33:53ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-0120101101690Shrinking Projection Method of Common Solutions for Generalized Equilibrium Quasi-<inline-formula> <graphic file="1029-242X-2010-101690-i1.gif"/></inline-formula>-Nonexpansive Mapping and Relatively Nonexpansive MappingLiu MinChang Shih-SenZuo Ping<p/> <p>We prove a strong convergence theorem for finding a common element of the set of solutions for generalized equilibrium problems, the set of fixed points of a relatively nonexpansive mapping, and the set of fixed points of a quasi-<inline-formula> <graphic file="1029-242X-2010-101690-i2.gif"/></inline-formula>-nonexpansive mapping in a Banach space by using the shrinking Projection method. Our results improve the main results in S. Takahashi and W. Takahashi (2008) and Takahashi and Zembayashi (2008). Moreover, the method of proof adopted in the paper is different from that of S. Takahashi and W. Zembayashi (2008).</p>http://www.journalofinequalitiesandapplications.com/content/2010/101690 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Liu Min Chang Shih-Sen Zuo Ping |
spellingShingle |
Liu Min Chang Shih-Sen Zuo Ping Shrinking Projection Method of Common Solutions for Generalized Equilibrium Quasi-<inline-formula> <graphic file="1029-242X-2010-101690-i1.gif"/></inline-formula>-Nonexpansive Mapping and Relatively Nonexpansive Mapping Journal of Inequalities and Applications |
author_facet |
Liu Min Chang Shih-Sen Zuo Ping |
author_sort |
Liu Min |
title |
Shrinking Projection Method of Common Solutions for Generalized Equilibrium Quasi-<inline-formula> <graphic file="1029-242X-2010-101690-i1.gif"/></inline-formula>-Nonexpansive Mapping and Relatively Nonexpansive Mapping |
title_short |
Shrinking Projection Method of Common Solutions for Generalized Equilibrium Quasi-<inline-formula> <graphic file="1029-242X-2010-101690-i1.gif"/></inline-formula>-Nonexpansive Mapping and Relatively Nonexpansive Mapping |
title_full |
Shrinking Projection Method of Common Solutions for Generalized Equilibrium Quasi-<inline-formula> <graphic file="1029-242X-2010-101690-i1.gif"/></inline-formula>-Nonexpansive Mapping and Relatively Nonexpansive Mapping |
title_fullStr |
Shrinking Projection Method of Common Solutions for Generalized Equilibrium Quasi-<inline-formula> <graphic file="1029-242X-2010-101690-i1.gif"/></inline-formula>-Nonexpansive Mapping and Relatively Nonexpansive Mapping |
title_full_unstemmed |
Shrinking Projection Method of Common Solutions for Generalized Equilibrium Quasi-<inline-formula> <graphic file="1029-242X-2010-101690-i1.gif"/></inline-formula>-Nonexpansive Mapping and Relatively Nonexpansive Mapping |
title_sort |
shrinking projection method of common solutions for generalized equilibrium quasi-<inline-formula> <graphic file="1029-242x-2010-101690-i1.gif"/></inline-formula>-nonexpansive mapping and relatively nonexpansive mapping |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2010-01-01 |
description |
<p/> <p>We prove a strong convergence theorem for finding a common element of the set of solutions for generalized equilibrium problems, the set of fixed points of a relatively nonexpansive mapping, and the set of fixed points of a quasi-<inline-formula> <graphic file="1029-242X-2010-101690-i2.gif"/></inline-formula>-nonexpansive mapping in a Banach space by using the shrinking Projection method. Our results improve the main results in S. Takahashi and W. Takahashi (2008) and Takahashi and Zembayashi (2008). Moreover, the method of proof adopted in the paper is different from that of S. Takahashi and W. Zembayashi (2008).</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2010/101690 |
work_keys_str_mv |
AT liumin shrinkingprojectionmethodofcommonsolutionsforgeneralizedequilibriumquasiinlineformulagraphicfile1029242x2010101690i1gifinlineformulanonexpansivemappingandrelativelynonexpansivemapping AT changshihsen shrinkingprojectionmethodofcommonsolutionsforgeneralizedequilibriumquasiinlineformulagraphicfile1029242x2010101690i1gifinlineformulanonexpansivemappingandrelativelynonexpansivemapping AT zuoping shrinkingprojectionmethodofcommonsolutionsforgeneralizedequilibriumquasiinlineformulagraphicfile1029242x2010101690i1gifinlineformulanonexpansivemappingandrelativelynonexpansivemapping |
_version_ |
1725951461517426688 |