Generalized dissipativeness in a Banach space
Suppose X is a real or complex Banach space with dual X* and a semiscalar product [,]. For k a real number, a subset B of X×X will be called k-dissipative if for each pair of elements (x1,y1), (x2,y2) in B, there existsh∈{f∈X*:[x,f]=|x|2=|f|2}such thatRe[y1−y2,h]≤k|x1−x2|2.This definition extends a...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1996-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171296000051 |