Summary: | In the present work, a reduced-order modeling (ROM) framework based on a recurrent neuro-fuzzy model (NFM) that is serial connected with a multilayer perceptron (MLP) neural network is applied for the computation of transonic aileron buzz. The training data set for the specified ROM is obtained by performing forced-motion unsteady Reynolds-averaged Navier Stokes (URANS) simulations. Further, a Monte Carlo-based training procedure is applied in order to estimate statistical errors. In order to demonstrate the method’s fidelity, a two-dimensional aeroelastic model based on the NACA65<sub>1</sub>213 airfoil is investigated at different flow conditions, while the aileron deflection and the hinge moment are considered in particular. The aileron is integrated in the wing section without a gap and is modeled as rigid. The dynamic equations of the rigid aileron rotation are coupled with the URANS-based flow model. For ROM training purposes, the aileron is excited via a forced motion and the respective aerodynamic and aeroelastic response is computed using a computational fluid dynamics (CFD) solver. A comparison with the high-fidelity reference CFD solutions shows that the essential characteristics of the nonlinear buzz phenomenon are captured by the selected ROM method.
|