Rab39a interacts with phosphatidylinositol 3-kinase and negatively regulates autophagy induced by lipopolysaccharide stimulation in macrophages.

Rab39a has pleiotropic functions in phagosome maturation, inflammatory activation and neuritogenesis. Here, we characterized Rab39a function in membrane trafficking of phagocytosis and autophagy induction in macrophages. Rab39a localized to the periphery of LAMP2-positive vesicles and showed the sim...

Full description

Bibliographic Details
Main Authors: Shintaro Seto, Keiko Sugaya, Kunio Tsujimura, Toshi Nagata, Toshinobu Horii, Yukio Koide
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3862771?pdf=render
Description
Summary:Rab39a has pleiotropic functions in phagosome maturation, inflammatory activation and neuritogenesis. Here, we characterized Rab39a function in membrane trafficking of phagocytosis and autophagy induction in macrophages. Rab39a localized to the periphery of LAMP2-positive vesicles and showed the similar kinetics on the phagosome to that of LAMP1. The depletion of Rab39a did not influence the localization of LAMP2 to the phagosome, but it augments the autophagosome formation and LC3 processing by lipopolysaccharide (LPS) stimulation. The augmentation of autophagosome formation in Rab39a-knockdown macrophages was suppressed by Atg5 depletion or an inhibitor for phosphatidylinostol 3-kinase (PI3K). Immunoprecipitation analysis revealed that Rab39a interacts with PI3K and that the amino acid residues from 34(th) to 41(st) in Rab39a were indispensable for this interaction. These results suggest that Rab39a negatively regulates the LPS-induced autophagy in macrophages.
ISSN:1932-6203