Rapid laboratory diagnosis of pulmonary tuberculosis

Background: Tuberculosis (TB) ranks as the second leading cause of death from an infectious disease worldwide. Early diagnosis of Mycobacterium tuberculosis in clinical samples becomes important in the control of TB both for the treatment of patients and for curbing of disease transmission to the ot...

Full description

Bibliographic Details
Main Authors: Prasanna Bhirud, Ameeta Joshi, Nilma Hirani, Abhay Chowdhary
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2017-01-01
Series:International Journal of Mycobacteriology
Subjects:
Online Access:http://www.ijmyco.org/article.asp?issn=2212-5531;year=2017;volume=6;issue=3;spage=296;epage=301;aulast=Bhirud
Description
Summary:Background: Tuberculosis (TB) ranks as the second leading cause of death from an infectious disease worldwide. Early diagnosis of Mycobacterium tuberculosis in clinical samples becomes important in the control of TB both for the treatment of patients and for curbing of disease transmission to the others in the community. The study objective was to perform Ziehl–Neelsen (ZN) staining, fluorochrome staining, line probe assay (LPA), and loop-mediated isothermal amplification (LAMP) assay for rapid detection of pulmonary TB (PTB) and to compare the results of LPA and LAMP in terms of sensitivity, specificity, and turnaround time. Methods: A total of 891 sputum samples from clinically diagnosed/suspected cases of TB were subjected to ZN and fluorochrome staining. Smear positive samples were subjected to LPA, and smear negative were cultured on Lowenstein–Jensen media. A total of 177 samples were subjected to liquid culture and LAMP. Conventional culture was considered as “gold standard” for calculation of parameters. Results: Light-emitting diode fluorescence microscopy had the same sensitivity as ZN with similar high specificity. LPA was performed on 548 sputum samples which includes 520 smear positive and 28 smear negative culture positive samples and multidrug-resistant TB was detected in 32.64%. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of TB-LAMP on direct sputum samples was found to be 98.96%, 95%, 96%, and 98.70%, respectively, when compared with ZN smear microscopy. By considering culture as “gold standard,” LAMP showed a sensitivity, specificity, PPV, and NPV of 98.94%, 96.34%, 96.90%, and 98.75%, respectively. The sensitivity and PPV of TB-LAMP were 98.97% and 96%, respectively, when compared with LPA. Conclusions: A successful rapid laboratory diagnosis of PTB is possible when one combines the available methodology of microscopy, culture as well as molecular techniques. The LAMP assay was found to be simple, self-contained, and efficacious for early diagnosis of suspected cases of PTB with advantages of having a high throughput, no requirements of sophisticated equipment, and complex biosafety facilities.
ISSN:2212-5531
2212-554X