Summary: | The grazing exclusion in degraded grassland has been extensively used to prevent the loss of grassland resources and to improve grassland services. The effects of grazing exclusion on C and N balance, however, have not been well addressed but are essential for assessing grassland C sinks, the sustainable use of grassland resources and the support of grassland services. To understand the response of ecosystem C and N to grazing exclusion in semiarid grassland, we determined the C and N in litter, aboveground biomass, roots and soils from ungrazed grassland fenced at different times in northwest China. Our results showed that the aboveground biomass, root biomass and plant litter were 70-92%, 56-151% and 59-141% higher, respectively, in grazer excluded grassland than in grazed grassland. Grazing exclusion significantly increased C and N stored in plant biomass and litter and increased the concentrations and stocks of C and N in soils. Grazing exclusion thus significantly increased the C and N stored in grassland ecosystems. The increase in C and N stored in soil contributed to more than 95% and 97% of the increases in ecosystem C and N storage. The highest C and N stocks in ecosystems were observed in 17-year grazer excluded grassland. The results from this study indicate that grazing exclusion has the potential to increase C and N storage in degraded semiarid grassland and that the recovery of ecosystem C and N was mainly due to the accumulation of C and N in soils.
|