Prediction and visualization data for the interpretation of sarcomeric and non-sarcomeric DNA variants found in patients with hypertrophic cardiomyopathy

Genomic technologies are redefining the understanding of genotype–phenotype relationships and over the past decade, many bioinformatics algorithms have been developed to predict functional consequences of single nucleotide variants. This article presents the data from a comprehensive computational w...

Full description

Bibliographic Details
Main Authors: Irene Bottillo, Daniela D’Angelantonio, Viviana Caputo, Alessandro Paiardini, Martina Lipari, Carmelilia De Bernardo, Silvia Majore, Marco Castori, Elisabetta Zachara, Federica Re, Paola Grammatico
Format: Article
Language:English
Published: Elsevier 2016-06-01
Series:Data in Brief
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340916301123
id doaj-d58b4d23c74d4869a07aad78f3382959
record_format Article
spelling doaj-d58b4d23c74d4869a07aad78f33829592020-11-24T22:00:22ZengElsevierData in Brief2352-34092016-06-017607613Prediction and visualization data for the interpretation of sarcomeric and non-sarcomeric DNA variants found in patients with hypertrophic cardiomyopathyIrene Bottillo0Daniela D’Angelantonio1Viviana Caputo2Alessandro Paiardini3Martina Lipari4Carmelilia De Bernardo5Silvia Majore6Marco Castori7Elisabetta Zachara8Federica Re9Paola Grammatico10Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy; Correspondence to: Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital Circonvallazione Gianicolense, 87 - 00152 Rome, Italy. Tel.: +39 06 58704622; fax: +39 06 5870 4657.Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, ItalyDepartment of Experimental Medicine, Sapienza University of Rome, Rome, ItalyDepartment of Biochemical Sciences, Sapienza University of Rome, Rome, ItalyMedical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, ItalyMedical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, ItalyMedical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, ItalyMedical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, ItalyCardiomyopathies Unit, Division of Cardiology and Cardiac Arrhythmias, San Camillo-Forlanini Hospital, Rome, ItalyCardiomyopathies Unit, Division of Cardiology and Cardiac Arrhythmias, San Camillo-Forlanini Hospital, Rome, ItalyMedical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, ItalyGenomic technologies are redefining the understanding of genotype–phenotype relationships and over the past decade, many bioinformatics algorithms have been developed to predict functional consequences of single nucleotide variants. This article presents the data from a comprehensive computational workflow adopted to assess the biomedical impact of the DNA variants resulting from the experimental study “Molecular analysis of sarcomeric and non-sarcomeric genes in patients with hypertrophic cardiomyopathy” (Bottillo et al., 2016) [1]. Several different independently methods were employed to predict the functional consequences of alleles that result in amino acid substitutions, to study the effect of some DNA variants over the splicing process and to investigate the impact of a sequence variant with respect to the evolutionary conservation.http://www.sciencedirect.com/science/article/pii/S2352340916301123
collection DOAJ
language English
format Article
sources DOAJ
author Irene Bottillo
Daniela D’Angelantonio
Viviana Caputo
Alessandro Paiardini
Martina Lipari
Carmelilia De Bernardo
Silvia Majore
Marco Castori
Elisabetta Zachara
Federica Re
Paola Grammatico
spellingShingle Irene Bottillo
Daniela D’Angelantonio
Viviana Caputo
Alessandro Paiardini
Martina Lipari
Carmelilia De Bernardo
Silvia Majore
Marco Castori
Elisabetta Zachara
Federica Re
Paola Grammatico
Prediction and visualization data for the interpretation of sarcomeric and non-sarcomeric DNA variants found in patients with hypertrophic cardiomyopathy
Data in Brief
author_facet Irene Bottillo
Daniela D’Angelantonio
Viviana Caputo
Alessandro Paiardini
Martina Lipari
Carmelilia De Bernardo
Silvia Majore
Marco Castori
Elisabetta Zachara
Federica Re
Paola Grammatico
author_sort Irene Bottillo
title Prediction and visualization data for the interpretation of sarcomeric and non-sarcomeric DNA variants found in patients with hypertrophic cardiomyopathy
title_short Prediction and visualization data for the interpretation of sarcomeric and non-sarcomeric DNA variants found in patients with hypertrophic cardiomyopathy
title_full Prediction and visualization data for the interpretation of sarcomeric and non-sarcomeric DNA variants found in patients with hypertrophic cardiomyopathy
title_fullStr Prediction and visualization data for the interpretation of sarcomeric and non-sarcomeric DNA variants found in patients with hypertrophic cardiomyopathy
title_full_unstemmed Prediction and visualization data for the interpretation of sarcomeric and non-sarcomeric DNA variants found in patients with hypertrophic cardiomyopathy
title_sort prediction and visualization data for the interpretation of sarcomeric and non-sarcomeric dna variants found in patients with hypertrophic cardiomyopathy
publisher Elsevier
series Data in Brief
issn 2352-3409
publishDate 2016-06-01
description Genomic technologies are redefining the understanding of genotype–phenotype relationships and over the past decade, many bioinformatics algorithms have been developed to predict functional consequences of single nucleotide variants. This article presents the data from a comprehensive computational workflow adopted to assess the biomedical impact of the DNA variants resulting from the experimental study “Molecular analysis of sarcomeric and non-sarcomeric genes in patients with hypertrophic cardiomyopathy” (Bottillo et al., 2016) [1]. Several different independently methods were employed to predict the functional consequences of alleles that result in amino acid substitutions, to study the effect of some DNA variants over the splicing process and to investigate the impact of a sequence variant with respect to the evolutionary conservation.
url http://www.sciencedirect.com/science/article/pii/S2352340916301123
work_keys_str_mv AT irenebottillo predictionandvisualizationdatafortheinterpretationofsarcomericandnonsarcomericdnavariantsfoundinpatientswithhypertrophiccardiomyopathy
AT danieladangelantonio predictionandvisualizationdatafortheinterpretationofsarcomericandnonsarcomericdnavariantsfoundinpatientswithhypertrophiccardiomyopathy
AT vivianacaputo predictionandvisualizationdatafortheinterpretationofsarcomericandnonsarcomericdnavariantsfoundinpatientswithhypertrophiccardiomyopathy
AT alessandropaiardini predictionandvisualizationdatafortheinterpretationofsarcomericandnonsarcomericdnavariantsfoundinpatientswithhypertrophiccardiomyopathy
AT martinalipari predictionandvisualizationdatafortheinterpretationofsarcomericandnonsarcomericdnavariantsfoundinpatientswithhypertrophiccardiomyopathy
AT carmeliliadebernardo predictionandvisualizationdatafortheinterpretationofsarcomericandnonsarcomericdnavariantsfoundinpatientswithhypertrophiccardiomyopathy
AT silviamajore predictionandvisualizationdatafortheinterpretationofsarcomericandnonsarcomericdnavariantsfoundinpatientswithhypertrophiccardiomyopathy
AT marcocastori predictionandvisualizationdatafortheinterpretationofsarcomericandnonsarcomericdnavariantsfoundinpatientswithhypertrophiccardiomyopathy
AT elisabettazachara predictionandvisualizationdatafortheinterpretationofsarcomericandnonsarcomericdnavariantsfoundinpatientswithhypertrophiccardiomyopathy
AT federicare predictionandvisualizationdatafortheinterpretationofsarcomericandnonsarcomericdnavariantsfoundinpatientswithhypertrophiccardiomyopathy
AT paolagrammatico predictionandvisualizationdatafortheinterpretationofsarcomericandnonsarcomericdnavariantsfoundinpatientswithhypertrophiccardiomyopathy
_version_ 1725844729574195200