Stochastic differential equations for random matrices processes in the nonlinear framework
In this paper, we investigate the processes of eigenvalues and eigenvectors of a symmetric matrix valued process \(X_{t}\), where \(X_{t}\) is the solution of a general SDE driven by a \(G\)-Brownian motion matrix. Stochastic differential equations of these processes are given. This extends results...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2018-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | http://www.opuscula.agh.edu.pl/vol38/2/art/opuscula_math_3812.pdf |
Summary: | In this paper, we investigate the processes of eigenvalues and eigenvectors of a symmetric matrix valued process \(X_{t}\), where \(X_{t}\) is the solution of a general SDE driven by a \(G\)-Brownian motion matrix. Stochastic differential equations of these processes are given. This extends results obtained by P. Graczyk and J. Malecki in [Multidimensional Yamada-Watanabe theorem and its applications to particle systems, J. Math. Phys. 54 (2013), 021503]. |
---|---|
ISSN: | 1232-9274 |