An energy conservative hp-scheme for light propagation using Liouville’s equation for geometrical optics

In this contribution an alternative method to standard forward ray-tracing is briefly outlined. The method is based on a phase-space description of light propagating through an optical system. The propagation of light rays are governed by Hamilton’s equations. Conservation of energy and étendue for...

Full description

Bibliographic Details
Main Authors: van Gestel Robert A.M., Anthonissen Martijn J.H., ten Thije Boonkkamp Jan H.M., IJzerman Wilbert L.
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2020/14/epjconf_eosam2020_02005.pdf
Description
Summary:In this contribution an alternative method to standard forward ray-tracing is briefly outlined. The method is based on a phase-space description of light propagating through an optical system. The propagation of light rays are governed by Hamilton’s equations. Conservation of energy and étendue for a beam of light, allow us to derive a Liouville’s equation for the energy propagation through an optical system. Liouville’s equation is solved numerically using an hp-adaptive scheme, which for a smooth refractive index field is energy conservative. A proper treatment of optical interfaces ensures that the scheme is energy conservative over the full domain.
ISSN:2100-014X