A Study on Thermal Performance of a Novel All-Glass Evacuated Tube Solar Collector Manifold Header with an Inserted Tube
A novel all-glass evacuated tube collector manifold header with an inserted tube is proposed in this paper which makes water in all-glass evacuated solar collector tube be forced circulated to improve the performance of solar collector. And a dynamic numerical model was presented for the novel all-g...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2015/409517 |
Summary: | A novel all-glass evacuated tube collector manifold header with an inserted tube is proposed in this paper which makes water in all-glass evacuated solar collector tube be forced circulated to improve the performance of solar collector. And a dynamic numerical model was presented for the novel all-glass evacuated tube collector manifold header water heater system. Also, a test rig was built for model validation and comparison with traditional all-glass evacuated tube collector. The experiment results show that the efficiency of solar water heater with a novel collector manifold header is higher than traditional all-glass evacuated tube collector by about 5% and the heat transfer model of water heater system is valid. Based on the model, the relationship between the average temperature of water tank and inserted tube diameter (water mass flow) has been studied. The results show that the optimized diameter of inserted tube is 32 mm for the inner glass with the diameter of 47 mm and the water flow mass should be less than 1.6 Kg/s. |
---|---|
ISSN: | 1110-662X 1687-529X |