Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Net...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2012-10-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/12/10/14004 |
id |
doaj-d55279a299b948648531d983d00994b1 |
---|---|
record_format |
Article |
spelling |
doaj-d55279a299b948648531d983d00994b12020-11-25T00:26:18ZengMDPI AGSensors1424-82202012-10-011210140041402110.3390/s121014004Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural NetworksBelén CarroGonzalo Ruiz-RuizJaime Gomez-GilJavier M. AguiarLuis M. Navas-GraciaVíctor Martínez-MartínezCarlos BaladrónThis paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.http://www.mdpi.com/1424-8220/12/10/14004estimationpredictionArtificial Neural Networks (ANN)tobacco drying processsignal processing |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Belén Carro Gonzalo Ruiz-Ruiz Jaime Gomez-Gil Javier M. Aguiar Luis M. Navas-Gracia Víctor Martínez-Martínez Carlos Baladrón |
spellingShingle |
Belén Carro Gonzalo Ruiz-Ruiz Jaime Gomez-Gil Javier M. Aguiar Luis M. Navas-Gracia Víctor Martínez-Martínez Carlos Baladrón Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks Sensors estimation prediction Artificial Neural Networks (ANN) tobacco drying process signal processing |
author_facet |
Belén Carro Gonzalo Ruiz-Ruiz Jaime Gomez-Gil Javier M. Aguiar Luis M. Navas-Gracia Víctor Martínez-Martínez Carlos Baladrón |
author_sort |
Belén Carro |
title |
Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks |
title_short |
Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks |
title_full |
Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks |
title_fullStr |
Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks |
title_full_unstemmed |
Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks |
title_sort |
temperature and relative humidity estimation and prediction in the tobacco drying process using artificial neural networks |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2012-10-01 |
description |
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed. |
topic |
estimation prediction Artificial Neural Networks (ANN) tobacco drying process signal processing |
url |
http://www.mdpi.com/1424-8220/12/10/14004 |
work_keys_str_mv |
AT belencarro temperatureandrelativehumidityestimationandpredictioninthetobaccodryingprocessusingartificialneuralnetworks AT gonzaloruizruiz temperatureandrelativehumidityestimationandpredictioninthetobaccodryingprocessusingartificialneuralnetworks AT jaimegomezgil temperatureandrelativehumidityestimationandpredictioninthetobaccodryingprocessusingartificialneuralnetworks AT javiermaguiar temperatureandrelativehumidityestimationandpredictioninthetobaccodryingprocessusingartificialneuralnetworks AT luismnavasgracia temperatureandrelativehumidityestimationandpredictioninthetobaccodryingprocessusingartificialneuralnetworks AT victormartinezmartinez temperatureandrelativehumidityestimationandpredictioninthetobaccodryingprocessusingartificialneuralnetworks AT carlosbaladron temperatureandrelativehumidityestimationandpredictioninthetobaccodryingprocessusingartificialneuralnetworks |
_version_ |
1725344922908753920 |