Interactions between a H<sub>2</sub> Molecule and Carbon Nanostructures: A DFT Study

On a long path of finding appropriate materials to store hydrogen, graphene and carbon nanotubes have drawn a lot of attention as potential storage materials. Their advantages lie at hand since those materials provide a large surface area (which can be used for physisorption), are cheap compared to...

Full description

Bibliographic Details
Main Authors: Dominik Gehringer, Thomas Dengg, Maxim N. Popov, David Holec
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:C
Subjects:
Online Access:https://www.mdpi.com/2311-5629/6/1/16
Description
Summary:On a long path of finding appropriate materials to store hydrogen, graphene and carbon nanotubes have drawn a lot of attention as potential storage materials. Their advantages lie at hand since those materials provide a large surface area (which can be used for physisorption), are cheap compared to metal hydrides, are abundant nearly everywhere, and most importantly, can increase safety to existing storage solutions. Therefore, a great variety of theoretical studies were employed to study those materials. After a benchmark study of different van-der-Waals corrections to Generalized Gradient Approximation (GGA), the present Density Functional Theory (DFT) study employs Tkatchenko&#8722;Scheffler (TS) correction to study the influence of vacancy and Stone&#8722;Wales defects in graphene on the physisorption of the hydrogen molecule. Furthermore, we investigate a large-angle (1,0) grain boundary as well as the adsorption behaviour of Penta-Octa-Penta (POP)-graphene.
ISSN:2311-5629