Direct Position Determination for Augmented Coprime Arrays via Weighted Subspace Data Fusion Method

Direct position determination (DPD) for augmented coprime arrays is investigated in this paper. Augmented coprime array expands degree of freedom and array aperture and improves positioning accuracy. Because of poor stability and noise sensitivity of the subspace data fusion (SDF) method, we propose...

Full description

Bibliographic Details
Main Authors: Yang Qian, Zhongtian Yang, Haowei Zeng
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2021/2825025
Description
Summary:Direct position determination (DPD) for augmented coprime arrays is investigated in this paper. Augmented coprime array expands degree of freedom and array aperture and improves positioning accuracy. Because of poor stability and noise sensitivity of the subspace data fusion (SDF) method, we propose two weighted subspace data fusion (W-SDF) algorithms for direct position determination. Simulation results show that two W-SDF algorithms have a prominent promotion in positioning accuracy than SDF, Capon, and propagator method (PM) algorithm for augmented coprime arrays. SDF based on optimal weighting (OW-SDF) is slightly better than SDF based on SNR weighting (SW-SDF) in positioning accuracy. The performance for DPD of the W-SDF method with augmented coprime arrays is better than that of the W-SDF method with uniform arrays.
ISSN:1563-5147