Study of the Vibration-Energy Properties of the CRTS-III Track Based on the Power Flow Method
The vibration induced by the high-speed railway (HSR) system has been a severe problem during the construction and operation period. To investigate the vibration-energy properties of the China Railways Track System (CRTS)-III track, a vehicle-track-subgrade coupling model is developed, in which the...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-01-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/1/69 |
id |
doaj-d4b99795f47949a3b73a9082fea1822a |
---|---|
record_format |
Article |
spelling |
doaj-d4b99795f47949a3b73a9082fea1822a2020-11-25T02:23:44ZengMDPI AGSymmetry2073-89942020-01-011216910.3390/sym12010069sym12010069Study of the Vibration-Energy Properties of the CRTS-III Track Based on the Power Flow MethodHanwen Jiang0Liang Gao1School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, ChinaSchool of Civil Engineering, Beijing Jiaotong University, Beijing 100044, ChinaThe vibration induced by the high-speed railway (HSR) system has been a severe problem during the construction and operation period. To investigate the vibration-energy properties of the China Railways Track System (CRTS)-III track, a vehicle-track-subgrade coupling model is developed, in which the distribution of the tangent force is symmetrical according to the FASTSIM theory, and the power flow method is utilized. What’s more, the corresponding evaluation indexes of the power flow are proposed to analyze the vibration energy of the track structure. The results reveal that the vibration energy decreases from top to bottom of the track structure among the frequency considered, and the decreasing trend is obvious. The vibration energy of the track structure is sensitive to the stiffness of fasteners. Differently, the vibration energy of the composite slab and the base slab is more sensitive to the stiffness of rubber damping pads than that of the rail. To sum up, this paper can provide a new perspective and method to study the vibration-energy properties and select the reasonable stiffness of the fasteners and the rubber damping pads of the CRTS-III track, and the proposed values of the stiffness of the fasteners and the rubber damping pads for the case under this study are 40 kN/mm and 400 MPa/m, respectively.https://www.mdpi.com/2073-8994/12/1/69crts-iii trackpower flowvehicle-track-subgrade coupling dynamicsvibration-energy properties |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hanwen Jiang Liang Gao |
spellingShingle |
Hanwen Jiang Liang Gao Study of the Vibration-Energy Properties of the CRTS-III Track Based on the Power Flow Method Symmetry crts-iii track power flow vehicle-track-subgrade coupling dynamics vibration-energy properties |
author_facet |
Hanwen Jiang Liang Gao |
author_sort |
Hanwen Jiang |
title |
Study of the Vibration-Energy Properties of the CRTS-III Track Based on the Power Flow Method |
title_short |
Study of the Vibration-Energy Properties of the CRTS-III Track Based on the Power Flow Method |
title_full |
Study of the Vibration-Energy Properties of the CRTS-III Track Based on the Power Flow Method |
title_fullStr |
Study of the Vibration-Energy Properties of the CRTS-III Track Based on the Power Flow Method |
title_full_unstemmed |
Study of the Vibration-Energy Properties of the CRTS-III Track Based on the Power Flow Method |
title_sort |
study of the vibration-energy properties of the crts-iii track based on the power flow method |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2020-01-01 |
description |
The vibration induced by the high-speed railway (HSR) system has been a severe problem during the construction and operation period. To investigate the vibration-energy properties of the China Railways Track System (CRTS)-III track, a vehicle-track-subgrade coupling model is developed, in which the distribution of the tangent force is symmetrical according to the FASTSIM theory, and the power flow method is utilized. What’s more, the corresponding evaluation indexes of the power flow are proposed to analyze the vibration energy of the track structure. The results reveal that the vibration energy decreases from top to bottom of the track structure among the frequency considered, and the decreasing trend is obvious. The vibration energy of the track structure is sensitive to the stiffness of fasteners. Differently, the vibration energy of the composite slab and the base slab is more sensitive to the stiffness of rubber damping pads than that of the rail. To sum up, this paper can provide a new perspective and method to study the vibration-energy properties and select the reasonable stiffness of the fasteners and the rubber damping pads of the CRTS-III track, and the proposed values of the stiffness of the fasteners and the rubber damping pads for the case under this study are 40 kN/mm and 400 MPa/m, respectively. |
topic |
crts-iii track power flow vehicle-track-subgrade coupling dynamics vibration-energy properties |
url |
https://www.mdpi.com/2073-8994/12/1/69 |
work_keys_str_mv |
AT hanwenjiang studyofthevibrationenergypropertiesofthecrtsiiitrackbasedonthepowerflowmethod AT lianggao studyofthevibrationenergypropertiesofthecrtsiiitrackbasedonthepowerflowmethod |
_version_ |
1724857558008594432 |