An efficient computational method for calculating ligand binding affinities.

Virtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug design. However, the docking scores are not sufficiently precise to represent the protein-ligand binding affinity. Here, we developed an efficient computational method for calculating pr...

Full description

Bibliographic Details
Main Authors: Atsushi Suenaga, Noriaki Okimoto, Yoshinori Hirano, Kazuhiko Fukui
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3423425?pdf=render
id doaj-d49edc9d90db4d8580d38b0911ae5e7f
record_format Article
spelling doaj-d49edc9d90db4d8580d38b0911ae5e7f2020-11-24T21:35:23ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0178e4284610.1371/journal.pone.0042846An efficient computational method for calculating ligand binding affinities.Atsushi SuenagaNoriaki OkimotoYoshinori HiranoKazuhiko FukuiVirtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug design. However, the docking scores are not sufficiently precise to represent the protein-ligand binding affinity. Here, we developed an efficient computational method for calculating protein-ligand binding affinity, which is based on molecular mechanics generalized Born/surface area (MM-GBSA) calculations and Jarzynski identity. Jarzynski identity is an exact relation between free energy differences and the work done through non-equilibrium process, and MM-GBSA is a semimacroscopic approach to calculate the potential energy. To calculate the work distribution when a ligand is pulled out of its binding site, multiple protein-ligand conformations are randomly generated as an alternative to performing an explicit single-molecule pulling simulation. We assessed the new method, multiple random conformation/MM-GBSA (MRC-MMGBSA), by evaluating ligand-binding affinities (scores) for four target proteins, and comparing these scores with experimental data. The calculated scores were qualitatively in good agreement with the experimental binding affinities, and the optimal docking structure could be determined by ranking the scores of the multiple docking poses obtained by the molecular docking process. Furthermore, the scores showed a strong linear response to experimental binding free energies, so that the free energy difference of the ligand binding (ΔΔG) could be calculated by linear scaling of the scores. The error of calculated ΔΔG was within ≈ ± 1.5 kcal.mol(-1) of the experimental values. Particularly, in the case of flexible target proteins, the MRC-MMGBSA scores were more effective in ranking ligands than those generated by the MM-GBSA method using a single protein-ligand conformation. The results suggest that, owing to its lower computational costs and greater accuracy, the MRC-MMGBSA offers efficient means to rank the ligands, in the post-docking process, according to their binding affinities, and to compare these directly with the experimental values.http://europepmc.org/articles/PMC3423425?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Atsushi Suenaga
Noriaki Okimoto
Yoshinori Hirano
Kazuhiko Fukui
spellingShingle Atsushi Suenaga
Noriaki Okimoto
Yoshinori Hirano
Kazuhiko Fukui
An efficient computational method for calculating ligand binding affinities.
PLoS ONE
author_facet Atsushi Suenaga
Noriaki Okimoto
Yoshinori Hirano
Kazuhiko Fukui
author_sort Atsushi Suenaga
title An efficient computational method for calculating ligand binding affinities.
title_short An efficient computational method for calculating ligand binding affinities.
title_full An efficient computational method for calculating ligand binding affinities.
title_fullStr An efficient computational method for calculating ligand binding affinities.
title_full_unstemmed An efficient computational method for calculating ligand binding affinities.
title_sort efficient computational method for calculating ligand binding affinities.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2012-01-01
description Virtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug design. However, the docking scores are not sufficiently precise to represent the protein-ligand binding affinity. Here, we developed an efficient computational method for calculating protein-ligand binding affinity, which is based on molecular mechanics generalized Born/surface area (MM-GBSA) calculations and Jarzynski identity. Jarzynski identity is an exact relation between free energy differences and the work done through non-equilibrium process, and MM-GBSA is a semimacroscopic approach to calculate the potential energy. To calculate the work distribution when a ligand is pulled out of its binding site, multiple protein-ligand conformations are randomly generated as an alternative to performing an explicit single-molecule pulling simulation. We assessed the new method, multiple random conformation/MM-GBSA (MRC-MMGBSA), by evaluating ligand-binding affinities (scores) for four target proteins, and comparing these scores with experimental data. The calculated scores were qualitatively in good agreement with the experimental binding affinities, and the optimal docking structure could be determined by ranking the scores of the multiple docking poses obtained by the molecular docking process. Furthermore, the scores showed a strong linear response to experimental binding free energies, so that the free energy difference of the ligand binding (ΔΔG) could be calculated by linear scaling of the scores. The error of calculated ΔΔG was within ≈ ± 1.5 kcal.mol(-1) of the experimental values. Particularly, in the case of flexible target proteins, the MRC-MMGBSA scores were more effective in ranking ligands than those generated by the MM-GBSA method using a single protein-ligand conformation. The results suggest that, owing to its lower computational costs and greater accuracy, the MRC-MMGBSA offers efficient means to rank the ligands, in the post-docking process, according to their binding affinities, and to compare these directly with the experimental values.
url http://europepmc.org/articles/PMC3423425?pdf=render
work_keys_str_mv AT atsushisuenaga anefficientcomputationalmethodforcalculatingligandbindingaffinities
AT noriakiokimoto anefficientcomputationalmethodforcalculatingligandbindingaffinities
AT yoshinorihirano anefficientcomputationalmethodforcalculatingligandbindingaffinities
AT kazuhikofukui anefficientcomputationalmethodforcalculatingligandbindingaffinities
AT atsushisuenaga efficientcomputationalmethodforcalculatingligandbindingaffinities
AT noriakiokimoto efficientcomputationalmethodforcalculatingligandbindingaffinities
AT yoshinorihirano efficientcomputationalmethodforcalculatingligandbindingaffinities
AT kazuhikofukui efficientcomputationalmethodforcalculatingligandbindingaffinities
_version_ 1725945181930258432