High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires

We demonstrate for the first time the efficient mechanical-electrical conversion properties of InGaN/GaN nanowires (NWs). Using an atomic force microscope equipped with a modified Resiscope module, we analyse the piezoelectric energy generation of GaN NWs and demonstrate an important enhancement whe...

Full description

Bibliographic Details
Main Authors: Nikoletta Jegenyes, Martina Morassi, Pascal Chrétien, Laurent Travers, Lu Lu, Francois H. Julien, Maria Tchernycheva, Frédéric Houzé, Noelle Gogneau
Format: Article
Language:English
Published: MDPI AG 2018-05-01
Series:Nanomaterials
Subjects:
Online Access:http://www.mdpi.com/2079-4991/8/6/367
id doaj-d4986e75072840d393519f57ceaf1822
record_format Article
spelling doaj-d4986e75072840d393519f57ceaf18222020-11-24T23:16:16ZengMDPI AGNanomaterials2079-49912018-05-018636710.3390/nano8060367nano8060367High Piezoelectric Conversion Properties of Axial InGaN/GaN NanowiresNikoletta Jegenyes0Martina Morassi1Pascal Chrétien2Laurent Travers3Lu Lu4Francois H. Julien5Maria Tchernycheva6Frédéric Houzé7Noelle Gogneau8Centre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceLaboratoire de Génie Électrique et Électronique de Paris, UMR 8507 CNRS-Centrale-Supélec, Université Paris-Sud, Université Paris-Saclay et UPMC-Sorbonne Université, F91190 Gif-sur-Yvette, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceLaboratoire de Génie Électrique et Électronique de Paris, UMR 8507 CNRS-Centrale-Supélec, Université Paris-Sud, Université Paris-Saclay et UPMC-Sorbonne Université, F91190 Gif-sur-Yvette, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceWe demonstrate for the first time the efficient mechanical-electrical conversion properties of InGaN/GaN nanowires (NWs). Using an atomic force microscope equipped with a modified Resiscope module, we analyse the piezoelectric energy generation of GaN NWs and demonstrate an important enhancement when integrating in their volume a thick In-rich InGaN insertion. The piezoelectric response of InGaN/GaN NWs can be tuned as a function of the InGaN insertion thickness and position in the NW volume. The energy harvesting is favoured by the presence of a PtSi/GaN Schottky diode which allows to efficiently collect the piezo-charges generated by InGaN/GaN NWs. Average output voltages up to 330 ± 70 mV and a maximum value of 470 mV per NW has been measured for nanostructures integrating 70 nm-thick InGaN insertion capped with a thin GaN top layer. This latter value establishes an increase of about 35% of the piezo-conversion capacity in comparison with binary p-doped GaN NWs. Based on the measured output signals, we estimate that one layer of dense InGaN/GaN-based NW can generate a maximum output power density of about 3.3 W/cm2. These results settle the new state-of-the-art for piezo-generation from GaN-based NWs and offer a promising perspective for extending the performances of the piezoelectric sources.http://www.mdpi.com/2079-4991/8/6/367III-N nanowirespiezoelectric generationatomic force microscopepiezo-generatorsenergy harvesting
collection DOAJ
language English
format Article
sources DOAJ
author Nikoletta Jegenyes
Martina Morassi
Pascal Chrétien
Laurent Travers
Lu Lu
Francois H. Julien
Maria Tchernycheva
Frédéric Houzé
Noelle Gogneau
spellingShingle Nikoletta Jegenyes
Martina Morassi
Pascal Chrétien
Laurent Travers
Lu Lu
Francois H. Julien
Maria Tchernycheva
Frédéric Houzé
Noelle Gogneau
High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires
Nanomaterials
III-N nanowires
piezoelectric generation
atomic force microscope
piezo-generators
energy harvesting
author_facet Nikoletta Jegenyes
Martina Morassi
Pascal Chrétien
Laurent Travers
Lu Lu
Francois H. Julien
Maria Tchernycheva
Frédéric Houzé
Noelle Gogneau
author_sort Nikoletta Jegenyes
title High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires
title_short High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires
title_full High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires
title_fullStr High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires
title_full_unstemmed High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires
title_sort high piezoelectric conversion properties of axial ingan/gan nanowires
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2018-05-01
description We demonstrate for the first time the efficient mechanical-electrical conversion properties of InGaN/GaN nanowires (NWs). Using an atomic force microscope equipped with a modified Resiscope module, we analyse the piezoelectric energy generation of GaN NWs and demonstrate an important enhancement when integrating in their volume a thick In-rich InGaN insertion. The piezoelectric response of InGaN/GaN NWs can be tuned as a function of the InGaN insertion thickness and position in the NW volume. The energy harvesting is favoured by the presence of a PtSi/GaN Schottky diode which allows to efficiently collect the piezo-charges generated by InGaN/GaN NWs. Average output voltages up to 330 ± 70 mV and a maximum value of 470 mV per NW has been measured for nanostructures integrating 70 nm-thick InGaN insertion capped with a thin GaN top layer. This latter value establishes an increase of about 35% of the piezo-conversion capacity in comparison with binary p-doped GaN NWs. Based on the measured output signals, we estimate that one layer of dense InGaN/GaN-based NW can generate a maximum output power density of about 3.3 W/cm2. These results settle the new state-of-the-art for piezo-generation from GaN-based NWs and offer a promising perspective for extending the performances of the piezoelectric sources.
topic III-N nanowires
piezoelectric generation
atomic force microscope
piezo-generators
energy harvesting
url http://www.mdpi.com/2079-4991/8/6/367
work_keys_str_mv AT nikolettajegenyes highpiezoelectricconversionpropertiesofaxialingangannanowires
AT martinamorassi highpiezoelectricconversionpropertiesofaxialingangannanowires
AT pascalchretien highpiezoelectricconversionpropertiesofaxialingangannanowires
AT laurenttravers highpiezoelectricconversionpropertiesofaxialingangannanowires
AT lulu highpiezoelectricconversionpropertiesofaxialingangannanowires
AT francoishjulien highpiezoelectricconversionpropertiesofaxialingangannanowires
AT mariatchernycheva highpiezoelectricconversionpropertiesofaxialingangannanowires
AT frederichouze highpiezoelectricconversionpropertiesofaxialingangannanowires
AT noellegogneau highpiezoelectricconversionpropertiesofaxialingangannanowires
_version_ 1725587920635559936