High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires
We demonstrate for the first time the efficient mechanical-electrical conversion properties of InGaN/GaN nanowires (NWs). Using an atomic force microscope equipped with a modified Resiscope module, we analyse the piezoelectric energy generation of GaN NWs and demonstrate an important enhancement whe...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-05-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | http://www.mdpi.com/2079-4991/8/6/367 |
id |
doaj-d4986e75072840d393519f57ceaf1822 |
---|---|
record_format |
Article |
spelling |
doaj-d4986e75072840d393519f57ceaf18222020-11-24T23:16:16ZengMDPI AGNanomaterials2079-49912018-05-018636710.3390/nano8060367nano8060367High Piezoelectric Conversion Properties of Axial InGaN/GaN NanowiresNikoletta Jegenyes0Martina Morassi1Pascal Chrétien2Laurent Travers3Lu Lu4Francois H. Julien5Maria Tchernycheva6Frédéric Houzé7Noelle Gogneau8Centre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceLaboratoire de Génie Électrique et Électronique de Paris, UMR 8507 CNRS-Centrale-Supélec, Université Paris-Sud, Université Paris-Saclay et UPMC-Sorbonne Université, F91190 Gif-sur-Yvette, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceLaboratoire de Génie Électrique et Électronique de Paris, UMR 8507 CNRS-Centrale-Supélec, Université Paris-Sud, Université Paris-Saclay et UPMC-Sorbonne Université, F91190 Gif-sur-Yvette, FranceCentre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud, Université Paris-Saclay, F91120 Palaiseau, FranceWe demonstrate for the first time the efficient mechanical-electrical conversion properties of InGaN/GaN nanowires (NWs). Using an atomic force microscope equipped with a modified Resiscope module, we analyse the piezoelectric energy generation of GaN NWs and demonstrate an important enhancement when integrating in their volume a thick In-rich InGaN insertion. The piezoelectric response of InGaN/GaN NWs can be tuned as a function of the InGaN insertion thickness and position in the NW volume. The energy harvesting is favoured by the presence of a PtSi/GaN Schottky diode which allows to efficiently collect the piezo-charges generated by InGaN/GaN NWs. Average output voltages up to 330 ± 70 mV and a maximum value of 470 mV per NW has been measured for nanostructures integrating 70 nm-thick InGaN insertion capped with a thin GaN top layer. This latter value establishes an increase of about 35% of the piezo-conversion capacity in comparison with binary p-doped GaN NWs. Based on the measured output signals, we estimate that one layer of dense InGaN/GaN-based NW can generate a maximum output power density of about 3.3 W/cm2. These results settle the new state-of-the-art for piezo-generation from GaN-based NWs and offer a promising perspective for extending the performances of the piezoelectric sources.http://www.mdpi.com/2079-4991/8/6/367III-N nanowirespiezoelectric generationatomic force microscopepiezo-generatorsenergy harvesting |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nikoletta Jegenyes Martina Morassi Pascal Chrétien Laurent Travers Lu Lu Francois H. Julien Maria Tchernycheva Frédéric Houzé Noelle Gogneau |
spellingShingle |
Nikoletta Jegenyes Martina Morassi Pascal Chrétien Laurent Travers Lu Lu Francois H. Julien Maria Tchernycheva Frédéric Houzé Noelle Gogneau High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires Nanomaterials III-N nanowires piezoelectric generation atomic force microscope piezo-generators energy harvesting |
author_facet |
Nikoletta Jegenyes Martina Morassi Pascal Chrétien Laurent Travers Lu Lu Francois H. Julien Maria Tchernycheva Frédéric Houzé Noelle Gogneau |
author_sort |
Nikoletta Jegenyes |
title |
High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires |
title_short |
High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires |
title_full |
High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires |
title_fullStr |
High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires |
title_full_unstemmed |
High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires |
title_sort |
high piezoelectric conversion properties of axial ingan/gan nanowires |
publisher |
MDPI AG |
series |
Nanomaterials |
issn |
2079-4991 |
publishDate |
2018-05-01 |
description |
We demonstrate for the first time the efficient mechanical-electrical conversion properties of InGaN/GaN nanowires (NWs). Using an atomic force microscope equipped with a modified Resiscope module, we analyse the piezoelectric energy generation of GaN NWs and demonstrate an important enhancement when integrating in their volume a thick In-rich InGaN insertion. The piezoelectric response of InGaN/GaN NWs can be tuned as a function of the InGaN insertion thickness and position in the NW volume. The energy harvesting is favoured by the presence of a PtSi/GaN Schottky diode which allows to efficiently collect the piezo-charges generated by InGaN/GaN NWs. Average output voltages up to 330 ± 70 mV and a maximum value of 470 mV per NW has been measured for nanostructures integrating 70 nm-thick InGaN insertion capped with a thin GaN top layer. This latter value establishes an increase of about 35% of the piezo-conversion capacity in comparison with binary p-doped GaN NWs. Based on the measured output signals, we estimate that one layer of dense InGaN/GaN-based NW can generate a maximum output power density of about 3.3 W/cm2. These results settle the new state-of-the-art for piezo-generation from GaN-based NWs and offer a promising perspective for extending the performances of the piezoelectric sources. |
topic |
III-N nanowires piezoelectric generation atomic force microscope piezo-generators energy harvesting |
url |
http://www.mdpi.com/2079-4991/8/6/367 |
work_keys_str_mv |
AT nikolettajegenyes highpiezoelectricconversionpropertiesofaxialingangannanowires AT martinamorassi highpiezoelectricconversionpropertiesofaxialingangannanowires AT pascalchretien highpiezoelectricconversionpropertiesofaxialingangannanowires AT laurenttravers highpiezoelectricconversionpropertiesofaxialingangannanowires AT lulu highpiezoelectricconversionpropertiesofaxialingangannanowires AT francoishjulien highpiezoelectricconversionpropertiesofaxialingangannanowires AT mariatchernycheva highpiezoelectricconversionpropertiesofaxialingangannanowires AT frederichouze highpiezoelectricconversionpropertiesofaxialingangannanowires AT noellegogneau highpiezoelectricconversionpropertiesofaxialingangannanowires |
_version_ |
1725587920635559936 |