LC-UV and UPLC-MS/MS Methods for Analytical Study on Degradation of Three Antihistaminic Drugs, Ketotifen, Epinastine and Emedastine: Percentage Degradation, Degradation Kinetics and Degradation Pathways at Different pH

Evaluation of pH-dependent reactivity of drugs is an essential component in the pharmaceutical industry. Thus, the stability of three antihistaminic drugs, i.e., ketotifen, epinastine and emedastine, was tested, in solutions of five pH values, i.e., 1.0, 3.0, 7.0, 10.0 and 13.0, at high temperature...

Full description

Bibliographic Details
Main Authors: Anna Gumieniczek, Izabela Kozak, Paweł Żmudzki, Urszula Hubicka
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/9/1/64
Description
Summary:Evaluation of pH-dependent reactivity of drugs is an essential component in the pharmaceutical industry. Thus, the stability of three antihistaminic drugs, i.e., ketotifen, epinastine and emedastine, was tested, in solutions of five pH values, i.e., 1.0, 3.0, 7.0, 10.0 and 13.0, at high temperature (70 °C). LC-UV isocratic methods were developed to estimate percentage degradation as well as the kinetics of degradation. Generally, epinastine was shown to be the most stable compound with degradation below 14%. Emedastine was labile in all pH conditions, with degradation in the range 29.26–51.88%. Ketotifen was moderately stable at pH 1–7 (degradation ≤ 14.04%). However, at pH ≥ 10, its degradation exceeded 30%. The kinetics of degradation of ketotifen, epinastine and emedastine was shown as a pseudo-first-order reaction with the rate constants in the range 10<sup>−4</sup>–10<sup>−3</sup> min<sup>−1</sup> Finally, the UPLC-MS/MS method was applied to identify the main degradants and suggest degradation pathways. Degradation of ketotifen proceeded with oxidation and demethylation in the piperidine ring of the molecule. As far as epinastine was concerned, opening of the imidazole ring with formation of the amide group was observed. Unfortunately, no degradation products for emedastine were detected. The present results complete the literary data and may be important for both manufacturing of these drugs and their administration to patients.
ISSN:2227-9717