Characterizations of Bloch-Type Spaces of Harmonic Mappings

We study the Banach space BHα (α>0) of the harmonic mappings h on the open unit disk D satisfying the condition supz∈D⁡(1-z2)α(hzz+hz¯z)<∞, where hz and hz¯ denote the first complex partial derivatives of h. We show that several properties that are valid for the space of analytic functions kno...

Full description

Bibliographic Details
Main Authors: Munirah Aljuaid, Flavia Colonna
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2019/5687343
Description
Summary:We study the Banach space BHα (α>0) of the harmonic mappings h on the open unit disk D satisfying the condition supz∈D⁡(1-z2)α(hzz+hz¯z)<∞, where hz and hz¯ denote the first complex partial derivatives of h. We show that several properties that are valid for the space of analytic functions known as the α-Bloch space extend to BHα. In particular, we prove that for α>0 the mappings in BHα can be characterized in terms of a Lipschitz condition relative to the metric defined by dH,α(z,w)=sup⁡{hz-hw:h∈BHα,hBHα≤1}. When α>1, the harmonic α-Bloch space can be viewed as the harmonic growth space of order α-1, while for 0<α<1, BHα is the space of harmonic mappings that are Lipschitz of order 1-α.
ISSN:2314-8896
2314-8888