Approximate Behavior of Bi-Quadratic Mappings in Quasinormed Spaces
We obtain the generalized Hyers-Ulam stability of the bi-quadratic functional equation f(x+y,z+w)+f(x+y,z-w)+f(x-y,z+w)+f(x-y,z-w)=4[f(x,z)+f(x,w)+f(y,z)+f(y,w)] in quasinormed spaces.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://dx.doi.org/10.1155/2010/472721 |
id |
doaj-d47010635ce44728a4ef12bb4a887297 |
---|---|
record_format |
Article |
spelling |
doaj-d47010635ce44728a4ef12bb4a8872972020-11-24T21:01:37ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-01201010.1155/2010/472721Approximate Behavior of Bi-Quadratic Mappings in Quasinormed SpacesWon-Gil ParkJae-Hyeong BaeWe obtain the generalized Hyers-Ulam stability of the bi-quadratic functional equation f(x+y,z+w)+f(x+y,z-w)+f(x-y,z+w)+f(x-y,z-w)=4[f(x,z)+f(x,w)+f(y,z)+f(y,w)] in quasinormed spaces. http://dx.doi.org/10.1155/2010/472721 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Won-Gil Park Jae-Hyeong Bae |
spellingShingle |
Won-Gil Park Jae-Hyeong Bae Approximate Behavior of Bi-Quadratic Mappings in Quasinormed Spaces Journal of Inequalities and Applications |
author_facet |
Won-Gil Park Jae-Hyeong Bae |
author_sort |
Won-Gil Park |
title |
Approximate Behavior of Bi-Quadratic Mappings in Quasinormed Spaces |
title_short |
Approximate Behavior of Bi-Quadratic Mappings in Quasinormed Spaces |
title_full |
Approximate Behavior of Bi-Quadratic Mappings in Quasinormed Spaces |
title_fullStr |
Approximate Behavior of Bi-Quadratic Mappings in Quasinormed Spaces |
title_full_unstemmed |
Approximate Behavior of Bi-Quadratic Mappings in Quasinormed Spaces |
title_sort |
approximate behavior of bi-quadratic mappings in quasinormed spaces |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2010-01-01 |
description |
We obtain the generalized Hyers-Ulam stability of the bi-quadratic functional equation f(x+y,z+w)+f(x+y,z-w)+f(x-y,z+w)+f(x-y,z-w)=4[f(x,z)+f(x,w)+f(y,z)+f(y,w)] in quasinormed spaces. |
url |
http://dx.doi.org/10.1155/2010/472721 |
work_keys_str_mv |
AT wongilpark approximatebehaviorofbiquadraticmappingsinquasinormedspaces AT jaehyeongbae approximatebehaviorofbiquadraticmappingsinquasinormedspaces |
_version_ |
1716777488473915392 |