PAL1 gene of the phenylpropanoid pathway increases resistance to the Cassava brown streak virus in cassava
Abstract Background The phenylalanine ammonia lyase genes play crucial role in plant response to biotic and abiotic stresses. In this study, we characterized the role of PAL genes in increasing resistance to the Cassava brown streak virus that causes the economically important cassava brown streak d...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2021-09-01
|
Series: | Virology Journal |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12985-021-01649-2 |
id |
doaj-d46e10f097e44186b02a0a5fba2dc61e |
---|---|
record_format |
Article |
spelling |
doaj-d46e10f097e44186b02a0a5fba2dc61e2021-09-12T11:03:04ZengBMCVirology Journal1743-422X2021-09-0118111010.1186/s12985-021-01649-2PAL1 gene of the phenylpropanoid pathway increases resistance to the Cassava brown streak virus in cassavaSiji Kavil0Gerald Otti1Sophie Bouvaine2Andrew Armitage3Midatharahally N. Maruthi4Agriculture, Health and Environment Department, Natural Resources Institute, University of GreenwichAgriculture, Health and Environment Department, Natural Resources Institute, University of GreenwichAgriculture, Health and Environment Department, Natural Resources Institute, University of GreenwichAgriculture, Health and Environment Department, Natural Resources Institute, University of GreenwichAgriculture, Health and Environment Department, Natural Resources Institute, University of GreenwichAbstract Background The phenylalanine ammonia lyase genes play crucial role in plant response to biotic and abiotic stresses. In this study, we characterized the role of PAL genes in increasing resistance to the Cassava brown streak virus that causes the economically important cassava brown streak disease (CBSD) on cassava in Africa. Methods The whole transcriptomes of eight cassava varieties differing in resistance to CBSD were obtained at 1, 5 and 8 weeks after CBSV infection. Results Analysis of RNA-Seq data identified the overexpression of PAL1, PAL2, cinnamic acid and two chalcone synthase genes in CBSD-resistant cassava varieties, which was subsequently confirmed by RT-qPCR. The exogenous application of Acibenzolar-S-Methyl induced PAL1 gene expression to enhance resistance in the susceptible var. Kalawe. In contrast, the silencing of PAL1 by RNA interference led to increased susceptibility of the resistant var. Kaleso to CBSD. Conclusions PAL1 gene of the phenylpropanoid pathway has a major role in inducing resistance to CBSD in cassava plants and its early induction is key for CBSD resistance.https://doi.org/10.1186/s12985-021-01649-2CassavaCBSDPAL1ResistanceInduction |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Siji Kavil Gerald Otti Sophie Bouvaine Andrew Armitage Midatharahally N. Maruthi |
spellingShingle |
Siji Kavil Gerald Otti Sophie Bouvaine Andrew Armitage Midatharahally N. Maruthi PAL1 gene of the phenylpropanoid pathway increases resistance to the Cassava brown streak virus in cassava Virology Journal Cassava CBSD PAL1 Resistance Induction |
author_facet |
Siji Kavil Gerald Otti Sophie Bouvaine Andrew Armitage Midatharahally N. Maruthi |
author_sort |
Siji Kavil |
title |
PAL1 gene of the phenylpropanoid pathway increases resistance to the Cassava brown streak virus in cassava |
title_short |
PAL1 gene of the phenylpropanoid pathway increases resistance to the Cassava brown streak virus in cassava |
title_full |
PAL1 gene of the phenylpropanoid pathway increases resistance to the Cassava brown streak virus in cassava |
title_fullStr |
PAL1 gene of the phenylpropanoid pathway increases resistance to the Cassava brown streak virus in cassava |
title_full_unstemmed |
PAL1 gene of the phenylpropanoid pathway increases resistance to the Cassava brown streak virus in cassava |
title_sort |
pal1 gene of the phenylpropanoid pathway increases resistance to the cassava brown streak virus in cassava |
publisher |
BMC |
series |
Virology Journal |
issn |
1743-422X |
publishDate |
2021-09-01 |
description |
Abstract Background The phenylalanine ammonia lyase genes play crucial role in plant response to biotic and abiotic stresses. In this study, we characterized the role of PAL genes in increasing resistance to the Cassava brown streak virus that causes the economically important cassava brown streak disease (CBSD) on cassava in Africa. Methods The whole transcriptomes of eight cassava varieties differing in resistance to CBSD were obtained at 1, 5 and 8 weeks after CBSV infection. Results Analysis of RNA-Seq data identified the overexpression of PAL1, PAL2, cinnamic acid and two chalcone synthase genes in CBSD-resistant cassava varieties, which was subsequently confirmed by RT-qPCR. The exogenous application of Acibenzolar-S-Methyl induced PAL1 gene expression to enhance resistance in the susceptible var. Kalawe. In contrast, the silencing of PAL1 by RNA interference led to increased susceptibility of the resistant var. Kaleso to CBSD. Conclusions PAL1 gene of the phenylpropanoid pathway has a major role in inducing resistance to CBSD in cassava plants and its early induction is key for CBSD resistance. |
topic |
Cassava CBSD PAL1 Resistance Induction |
url |
https://doi.org/10.1186/s12985-021-01649-2 |
work_keys_str_mv |
AT sijikavil pal1geneofthephenylpropanoidpathwayincreasesresistancetothecassavabrownstreakvirusincassava AT geraldotti pal1geneofthephenylpropanoidpathwayincreasesresistancetothecassavabrownstreakvirusincassava AT sophiebouvaine pal1geneofthephenylpropanoidpathwayincreasesresistancetothecassavabrownstreakvirusincassava AT andrewarmitage pal1geneofthephenylpropanoidpathwayincreasesresistancetothecassavabrownstreakvirusincassava AT midatharahallynmaruthi pal1geneofthephenylpropanoidpathwayincreasesresistancetothecassavabrownstreakvirusincassava |
_version_ |
1717756099520626688 |