Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle.
Mammals have a large cohort of endo- and ecto- symbiotic microorganisms (the microbiome) that potentially influence host phenotypes. There have been numerous exploratory studies of these symbiotic organisms in humans and other animals, often with the aim of relating the microbiome to a complex pheno...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3762846?pdf=render |
id |
doaj-d43e138ae9f442928262a7612d4fd28e |
---|---|
record_format |
Article |
spelling |
doaj-d43e138ae9f442928262a7612d4fd28e2020-11-25T00:47:04ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0189e7305610.1371/journal.pone.0073056Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle.Elizabeth M RossPeter J MoateLeah C MarettBen G CocksBen J HayesMammals have a large cohort of endo- and ecto- symbiotic microorganisms (the microbiome) that potentially influence host phenotypes. There have been numerous exploratory studies of these symbiotic organisms in humans and other animals, often with the aim of relating the microbiome to a complex phenotype such as body mass index (BMI) or disease state. Here, we describe an efficient methodology for predicting complex traits from quantitative microbiome profiles. The method was demonstrated by predicting inflammatory bowel disease (IBD) status and BMI from human microbiome data, and enteric greenhouse gas production from dairy cattle rumen microbiome profiles. The method uses unassembled massively parallel sequencing (MPS) data to form metagenomic relationship matrices (analogous to genomic relationship matrices used in genomic predictions) to predict IBD, BMI and methane production phenotypes with useful accuracies (r = 0.423, 0.422 and 0.466 respectively). Our results show that microbiome profiles derived from MPS can be used to predict complex phenotypes of the host. Although the number of biological replicates used here limits the accuracy that can be achieved, preliminary results suggest this approach may surpass current prediction accuracies that are based on the host genome. This is especially likely for traits that are largely influenced by the gut microbiota, for example digestive tract disorders or metabolic functions such as enteric methane production in cattle.http://europepmc.org/articles/PMC3762846?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Elizabeth M Ross Peter J Moate Leah C Marett Ben G Cocks Ben J Hayes |
spellingShingle |
Elizabeth M Ross Peter J Moate Leah C Marett Ben G Cocks Ben J Hayes Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle. PLoS ONE |
author_facet |
Elizabeth M Ross Peter J Moate Leah C Marett Ben G Cocks Ben J Hayes |
author_sort |
Elizabeth M Ross |
title |
Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle. |
title_short |
Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle. |
title_full |
Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle. |
title_fullStr |
Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle. |
title_full_unstemmed |
Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle. |
title_sort |
metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2013-01-01 |
description |
Mammals have a large cohort of endo- and ecto- symbiotic microorganisms (the microbiome) that potentially influence host phenotypes. There have been numerous exploratory studies of these symbiotic organisms in humans and other animals, often with the aim of relating the microbiome to a complex phenotype such as body mass index (BMI) or disease state. Here, we describe an efficient methodology for predicting complex traits from quantitative microbiome profiles. The method was demonstrated by predicting inflammatory bowel disease (IBD) status and BMI from human microbiome data, and enteric greenhouse gas production from dairy cattle rumen microbiome profiles. The method uses unassembled massively parallel sequencing (MPS) data to form metagenomic relationship matrices (analogous to genomic relationship matrices used in genomic predictions) to predict IBD, BMI and methane production phenotypes with useful accuracies (r = 0.423, 0.422 and 0.466 respectively). Our results show that microbiome profiles derived from MPS can be used to predict complex phenotypes of the host. Although the number of biological replicates used here limits the accuracy that can be achieved, preliminary results suggest this approach may surpass current prediction accuracies that are based on the host genome. This is especially likely for traits that are largely influenced by the gut microbiota, for example digestive tract disorders or metabolic functions such as enteric methane production in cattle. |
url |
http://europepmc.org/articles/PMC3762846?pdf=render |
work_keys_str_mv |
AT elizabethmross metagenomicpredictionsfrommicrobiometocomplexhealthandenvironmentalphenotypesinhumansandcattle AT peterjmoate metagenomicpredictionsfrommicrobiometocomplexhealthandenvironmentalphenotypesinhumansandcattle AT leahcmarett metagenomicpredictionsfrommicrobiometocomplexhealthandenvironmentalphenotypesinhumansandcattle AT bengcocks metagenomicpredictionsfrommicrobiometocomplexhealthandenvironmentalphenotypesinhumansandcattle AT benjhayes metagenomicpredictionsfrommicrobiometocomplexhealthandenvironmentalphenotypesinhumansandcattle |
_version_ |
1725262098314821632 |