Establishment of a Site-Specific Tropospheric Model Based on Ground Meteorological Parameters over the China Region

China is a country of vast territory with complicated geographical environment and climate conditions. With the rapid progress of the Chinese BeiDou satellite navigation system (BDS); more accurate tropospheric models must be applied to improve the accuracy of navigation and positioning. Based on th...

Full description

Bibliographic Details
Main Authors: Chongchong Zhou, Bibo Peng, Wei Li, Shiming Zhong, Jikun Ou, Runjing Chen, Xinglong Zhao
Format: Article
Language:English
Published: MDPI AG 2017-07-01
Series:Sensors
Subjects:
ZTD
Online Access:https://www.mdpi.com/1424-8220/17/8/1722
Description
Summary:China is a country of vast territory with complicated geographical environment and climate conditions. With the rapid progress of the Chinese BeiDou satellite navigation system (BDS); more accurate tropospheric models must be applied to improve the accuracy of navigation and positioning. Based on the formula of the Saastamoinen and Callahan models; this study develops two single-site tropospheric models (named SAAS_S and CH_S models) for the Chinese region using radiosonde data from 2005 to 2012. We assess the two single-site tropospheric models with radiosonde data for 2013 and zenith tropospheric delay (ZTD) data from four International GNSS Service (IGS) stations and compare them to the results of the Saastamoinen and Callahan models. The experimental results show that: the mean accuracy of the SAAS_S model (bias: 0.19 cm; RMS: 3.19 cm) at all radiosonde stations is superior to those of the Saastamoinen (bias: 0.62 cm; RMS: 3.62 cm) and CH_S (bias: −0.05 cm; RMS: 3.38 cm) models. In most Chinese regions; the RMS values of the SAAS_S and CH_S models are about 0.51~2.12 cm smaller than those of their corresponding source models. The SAAS_S model exhibits a clear improvement in the accuracy over the Saastamoinen model in low latitude regions. When the SAAS_S model is replaced by the SAAS model in the positioning of GNSS; the mean accuracy of vertical direction in the China region can be improved by 1.12~1.55 cm and the accuracy of vertical direction in low latitude areas can be improved by 1.33~7.63 cm. The residuals of the SAAS_S model are closer to a normal distribution compared to those of the Saastamoinen model. Single-site tropospheric models based on the short period of the most recent data (for example 2 years) can also achieve a satisfactory accuracy. The average performance of the SAAS_S model (bias: 0.83 cm; RMS: 3.24 cm) at four IGS stations is superior to that of the Saastamoinen (bias: −0.86 cm; RMS: 3.59 cm) and CH_S (bias: 0.45 cm; RMS: 3.38 cm) models.
ISSN:1424-8220