On the monoid of cofinite partial isometries of $\qq{N}^n$ with the usual metric
In this paper we study the structure of the monoid Iℕn ∞ of cofinite partial isometries of the n-th power of the set of positive integers ℕ with the usual metric for a positive integer n > 2. We describe the group of units and the subset of idempotents of the semigroup Iℕn ∞, the natural partial...
Main Authors: | , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Odessa National Academy of Food Technologies
2019-12-01
|
Series: | Pracì Mìžnarodnogo Geometričnogo Centru |
Subjects: | |
Online Access: | https://journals.onaft.edu.ua/index.php/geometry/article/view/1553 |
Summary: | In this paper we study the structure of the monoid Iℕn ∞ of cofinite partial isometries of the n-th power of the set of positive integers ℕ with the usual metric for a positive integer n > 2. We describe the group of units and the subset of idempotents of the semigroup Iℕn ∞, the natural partial order and Green's relations on Iℕn ∞. In particular we show that the quotient semigroup Iℕn ∞/Cmg, where Cmg is the minimum group congruence on Iℕn ∞, is isomorphic to the symmetric group Sn and D = J in Iℕn ∞. Also, we prove that for any integer n ≥2 the semigroup Iℕn ∞ is isomorphic to the semidirect product Sn ×h(P∞(Nn); U) of the free semilattice with the unit (P∞(Nn); U) by the symmetric group Sn. |
---|---|
ISSN: | 2072-9812 2409-8906 |