Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: A DFT study

Using highly accurate FP-LAPW method with GGA approximation structural, electronic and elastic properties of cubic CaTiO3 have been calculated from 0-120 GPa range of pressure. It is observed that lattice constant, bond length and anisotropy factor decrease with increase in pressure. Also the brittl...

Full description

Bibliographic Details
Main Authors: Saad Tariq, Afaq Ahmed, Saher Saad, Samar Tariq
Format: Article
Language:English
Published: AIP Publishing LLC 2015-07-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4926437
Description
Summary:Using highly accurate FP-LAPW method with GGA approximation structural, electronic and elastic properties of cubic CaTiO3 have been calculated from 0-120 GPa range of pressure. It is observed that lattice constant, bond length and anisotropy factor decrease with increase in pressure. Also the brittle nature and indirect band-gap of the compound become ductile and direct band-gap respectively at 120 GPa. Moduli of elasticity, density of the material, Debye temperature and wave elastic wave velocities increase with increase in pressure. Spin dependent DOS’s plots show invariant anti-ferromagnetic nature of the compound under pressure. Our calculated results are in good agreement with available theoretical and experimental results.
ISSN:2158-3226