Summary: | Global effects caused by the detonation of an IED near a military vehicle induce subsequent severe acceleration effects on the vehicle occupants. Two concepts to minimize these global effects were developed, with the help of a combined method based on a scaled experimental technology and numerical simulations. The first concept consists in the optimization of the vehicle shape to reduce the momentum transfer and thus the occupant loading. Three scaled V-shaped vehicles with different ground clearances were built and compared to a reference vehicle equipped with a flat floor. The second concept, called dynamic impulse compensation (DIC), is based on a momentum compensation technique. The principal possibility of this concept was demonstrated on a scaled vehicle. In addition, the numerical simulations have been performed with generic full size vehicles including dummy models, proving the capability of the DIC technology to reduce the occupant loading.
|