Intelligent Computer-Aided Prostate Cancer Diagnosis Systems: State-of-the-Art and Future Directions
Prostate Cancer (PCa) is one of the common cancers among men in the world. About 16.67% of men will be affected by PCa in their life. Due to the integration of magnetic resonance imaging in the current clinical procedure for detecting prostate cancer and the apparent success of imaging techniques in...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2021/9955174 |
id |
doaj-d3e0f8c4c7a448ac9eab1754cf8be383 |
---|---|
record_format |
Article |
spelling |
doaj-d3e0f8c4c7a448ac9eab1754cf8be3832021-07-19T01:04:52ZengHindawi LimitedMathematical Problems in Engineering1563-51472021-01-01202110.1155/2021/9955174Intelligent Computer-Aided Prostate Cancer Diagnosis Systems: State-of-the-Art and Future DirectionsRachid Sammouda0Abdu Gumaei1Ali El-Zaart2Department of Computer ScienceDepartment of Computer ScienceDepartment of Mathematics and Computer ScienceProstate Cancer (PCa) is one of the common cancers among men in the world. About 16.67% of men will be affected by PCa in their life. Due to the integration of magnetic resonance imaging in the current clinical procedure for detecting prostate cancer and the apparent success of imaging techniques in the estimation of PCa volume in the gland, we provide a more detailed review of methodologies that use specific parameters for prostate tissue representation. After collecting over 200 researches on image-based systems for diagnosing prostate cancer, in this paper, we provide a detailed review of existing computer-aided diagnosis (CAD) methods and approaches to identify prostate cancer from images generated using Near-Infrared (NIR), Mid-Infrared (MIR), and Magnetic Resonance Imaging (MRI) techniques. Furthermore, we introduce two research methodologies to build intelligent CAD systems. The first methodology applies a fuzzy integral method to maintain the diversity and capacity of different classifiers aggregation to detect PCa tumor from NIR and MIR images. The second methodology investigates a typical workflow for developing an automated prostate cancer diagnosis using MRI images. Essentially, CAD development remains a helpful tool of radiology for diagnosing prostate cancer disease. Nonetheless, a complete implementation of effective and intelligent methods is still required for the PCa-diagnostic system. While some CAD applications work well, some limitations need to be solved for automated clinical PCa diagnostic. It is anticipated that more advances should be made in computational image analysis and computer-assisted approaches to satisfy clinical needs shortly in the coming years.http://dx.doi.org/10.1155/2021/9955174 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rachid Sammouda Abdu Gumaei Ali El-Zaart |
spellingShingle |
Rachid Sammouda Abdu Gumaei Ali El-Zaart Intelligent Computer-Aided Prostate Cancer Diagnosis Systems: State-of-the-Art and Future Directions Mathematical Problems in Engineering |
author_facet |
Rachid Sammouda Abdu Gumaei Ali El-Zaart |
author_sort |
Rachid Sammouda |
title |
Intelligent Computer-Aided Prostate Cancer Diagnosis Systems: State-of-the-Art and Future Directions |
title_short |
Intelligent Computer-Aided Prostate Cancer Diagnosis Systems: State-of-the-Art and Future Directions |
title_full |
Intelligent Computer-Aided Prostate Cancer Diagnosis Systems: State-of-the-Art and Future Directions |
title_fullStr |
Intelligent Computer-Aided Prostate Cancer Diagnosis Systems: State-of-the-Art and Future Directions |
title_full_unstemmed |
Intelligent Computer-Aided Prostate Cancer Diagnosis Systems: State-of-the-Art and Future Directions |
title_sort |
intelligent computer-aided prostate cancer diagnosis systems: state-of-the-art and future directions |
publisher |
Hindawi Limited |
series |
Mathematical Problems in Engineering |
issn |
1563-5147 |
publishDate |
2021-01-01 |
description |
Prostate Cancer (PCa) is one of the common cancers among men in the world. About 16.67% of men will be affected by PCa in their life. Due to the integration of magnetic resonance imaging in the current clinical procedure for detecting prostate cancer and the apparent success of imaging techniques in the estimation of PCa volume in the gland, we provide a more detailed review of methodologies that use specific parameters for prostate tissue representation. After collecting over 200 researches on image-based systems for diagnosing prostate cancer, in this paper, we provide a detailed review of existing computer-aided diagnosis (CAD) methods and approaches to identify prostate cancer from images generated using Near-Infrared (NIR), Mid-Infrared (MIR), and Magnetic Resonance Imaging (MRI) techniques. Furthermore, we introduce two research methodologies to build intelligent CAD systems. The first methodology applies a fuzzy integral method to maintain the diversity and capacity of different classifiers aggregation to detect PCa tumor from NIR and MIR images. The second methodology investigates a typical workflow for developing an automated prostate cancer diagnosis using MRI images. Essentially, CAD development remains a helpful tool of radiology for diagnosing prostate cancer disease. Nonetheless, a complete implementation of effective and intelligent methods is still required for the PCa-diagnostic system. While some CAD applications work well, some limitations need to be solved for automated clinical PCa diagnostic. It is anticipated that more advances should be made in computational image analysis and computer-assisted approaches to satisfy clinical needs shortly in the coming years. |
url |
http://dx.doi.org/10.1155/2021/9955174 |
work_keys_str_mv |
AT rachidsammouda intelligentcomputeraidedprostatecancerdiagnosissystemsstateoftheartandfuturedirections AT abdugumaei intelligentcomputeraidedprostatecancerdiagnosissystemsstateoftheartandfuturedirections AT alielzaart intelligentcomputeraidedprostatecancerdiagnosissystemsstateoftheartandfuturedirections |
_version_ |
1721295486275551232 |