A Low-Rank Group-Sparse Model for Eliminating Mixed Errors in Data for SRTM1
The elimination of mixed errors is a key preprocessing technology for the area of digital elevation model data analysis, which is important for further applying data. We associated group sparsity with the low-rank uniqueness of local transformations of mixing errors to effectively remove mixing erro...
Main Authors: | Chenyu Ge, Mengmeng Wang, Hongming Zhang, Huan Chen, Hongguang Sun, Yi Chang, Qinke Yang |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/13/7/1346 |
Similar Items
-
COMPARISON OF SRTM ELEVATION DATA WITH CARTOGRAPHICALLY DERIVED DEMS IN ITALY
by: Francesca Ardizzone, et al.
Published: (2008-08-01) -
Caveats Concerning the Use of SRTM DEM Version 4.1 (CGIAR-CSI)
by: John Peter Merryman Boncori
Published: (2016-09-01) -
Análise de imagens baseada em objetos geográficos (GEOBIA) aplicada ao mapeamento da transição entre cinturão orogênico do atlântico e bacia sedimentar do Paraná
by: Leonardo Takei Kawata
Published: (2014) -
Análise de imagens baseada em objetos geográficos (GEOBIA) aplicada ao mapeamento da transição entre cinturão orogênico do atlântico e bacia sedimentar do Paraná
by: Kawata, Leonardo Takei
Published: (2014) -
Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests
by: Heiko Balzter, et al.
Published: (2015-11-01)