Optimal Resource Allocation for Uplink Data Collection in Nonorthogonal Multiple Access Networks

Accommodating massive connectivity for Internet of Things (IoT) applications is considered an important goal of future 5G cellular systems. Nonorthogonal multiple access (NOMA), which enables a group of mobile users to simultaneously share the same spectrum channel for transmission, provides an effi...

Full description

Bibliographic Details
Main Authors: Yuan Wu, Cheng Zhang, Kejie Ni, Liping Qian, Liang Huang, Wei Zhu
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/18/8/2542
Description
Summary:Accommodating massive connectivity for Internet of Things (IoT) applications is considered an important goal of future 5G cellular systems. Nonorthogonal multiple access (NOMA), which enables a group of mobile users to simultaneously share the same spectrum channel for transmission, provides an efficient approach to achieve the goals of spectrum-efficient data delivery. In this paper, we consider an uplink transmission in a sensor network in which a group of smart terminals (e.g., sensors) use NOMA to send their collected data to an access point. We aim to minimize the total radio resource consumption cost, including the cost for the channel usage and the cost for all senors’ energy consumption to allow the sensors to complete their data delivery requirements. Specifically, we formulate a joint optimization of the decoding-order, transmit-power and time allocations to study this problem and propose an efficient algorithm to find the optimal solution. Numerical results are provided to validate our proposed algorithm and the performance advantage of our proposed joint optimization for the uplink data collection via NOMA transmission.
ISSN:1424-8220