Acoustic Anomalies and Fast Relaxation Dynamics of Amorphous Progesterone as Revealed by Brillouin Light Scattering
The amorphous state of pharmaceuticals has attracted much attention due to its high bioavailability and other advantages. The stability of the amorphous state in relation with the local molecular mobility is important from both fundamental and practical points of view. The acoustic properties of amo...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-12-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/10/12/1426 |
id |
doaj-d3c59f958289448780cd472daae1aff5 |
---|---|
record_format |
Article |
spelling |
doaj-d3c59f958289448780cd472daae1aff52020-11-24T21:15:23ZengMDPI AGMaterials1996-19442017-12-011012142610.3390/ma10121426ma10121426Acoustic Anomalies and Fast Relaxation Dynamics of Amorphous Progesterone as Revealed by Brillouin Light ScatteringTae Hyun Kim0Hyojong Yoo1Jae-Hyeon Ko2Agency for Defense Development, P.O. Box 35, Yuseong, Daejeon 34186, KoreaDepartment of Chemistry, Hallym University, Chuncheon, Gangwon-do 24252, KoreaDepartment of Physics, Hallym University, Chuncheon, Gangwon-do 24252, KoreaThe amorphous state of pharmaceuticals has attracted much attention due to its high bioavailability and other advantages. The stability of the amorphous state in relation with the local molecular mobility is important from both fundamental and practical points of view. The acoustic properties of amorphous progesterone, one of the representative steroid hormones, were investigated by using a Brillouin inelastic light scattering technique. The Brillouin spectrum of the longitudinal acoustic mode exhibited distinct changes at the glass transition and the cold-crystallization temperatures. The acoustic dispersions of the longitudinal sound velocity and the acoustic absorption coefficient were attributed to the fast and possibly the secondary relaxation processes in the glassy and supercooled liquid states, while the structural relaxation process was considered as the dominant origin for the significant acoustic damping observed even in the liquid phase. The persisting acoustic dispersion in the liquid state was attributed to the single-molecule nature of the progesterone which does not exhibit hydrogen bonds in the condensed states.https://www.mdpi.com/1996-1944/10/12/1426progesteronepharmaceuticalglassBrillouin scatteringacoustic |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tae Hyun Kim Hyojong Yoo Jae-Hyeon Ko |
spellingShingle |
Tae Hyun Kim Hyojong Yoo Jae-Hyeon Ko Acoustic Anomalies and Fast Relaxation Dynamics of Amorphous Progesterone as Revealed by Brillouin Light Scattering Materials progesterone pharmaceutical glass Brillouin scattering acoustic |
author_facet |
Tae Hyun Kim Hyojong Yoo Jae-Hyeon Ko |
author_sort |
Tae Hyun Kim |
title |
Acoustic Anomalies and Fast Relaxation Dynamics of Amorphous Progesterone as Revealed by Brillouin Light Scattering |
title_short |
Acoustic Anomalies and Fast Relaxation Dynamics of Amorphous Progesterone as Revealed by Brillouin Light Scattering |
title_full |
Acoustic Anomalies and Fast Relaxation Dynamics of Amorphous Progesterone as Revealed by Brillouin Light Scattering |
title_fullStr |
Acoustic Anomalies and Fast Relaxation Dynamics of Amorphous Progesterone as Revealed by Brillouin Light Scattering |
title_full_unstemmed |
Acoustic Anomalies and Fast Relaxation Dynamics of Amorphous Progesterone as Revealed by Brillouin Light Scattering |
title_sort |
acoustic anomalies and fast relaxation dynamics of amorphous progesterone as revealed by brillouin light scattering |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2017-12-01 |
description |
The amorphous state of pharmaceuticals has attracted much attention due to its high bioavailability and other advantages. The stability of the amorphous state in relation with the local molecular mobility is important from both fundamental and practical points of view. The acoustic properties of amorphous progesterone, one of the representative steroid hormones, were investigated by using a Brillouin inelastic light scattering technique. The Brillouin spectrum of the longitudinal acoustic mode exhibited distinct changes at the glass transition and the cold-crystallization temperatures. The acoustic dispersions of the longitudinal sound velocity and the acoustic absorption coefficient were attributed to the fast and possibly the secondary relaxation processes in the glassy and supercooled liquid states, while the structural relaxation process was considered as the dominant origin for the significant acoustic damping observed even in the liquid phase. The persisting acoustic dispersion in the liquid state was attributed to the single-molecule nature of the progesterone which does not exhibit hydrogen bonds in the condensed states. |
topic |
progesterone pharmaceutical glass Brillouin scattering acoustic |
url |
https://www.mdpi.com/1996-1944/10/12/1426 |
work_keys_str_mv |
AT taehyunkim acousticanomaliesandfastrelaxationdynamicsofamorphousprogesteroneasrevealedbybrillouinlightscattering AT hyojongyoo acousticanomaliesandfastrelaxationdynamicsofamorphousprogesteroneasrevealedbybrillouinlightscattering AT jaehyeonko acousticanomaliesandfastrelaxationdynamicsofamorphousprogesteroneasrevealedbybrillouinlightscattering |
_version_ |
1716745444390862848 |