Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy

Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during...

Full description

Bibliographic Details
Main Authors: Ming Wu, Janis Kim, Pooja Arora, Deborah J. Gaebler-Spira, Yunhui Zhang
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Neural Plasticity
Online Access:http://dx.doi.org/10.1155/2016/5020348
Description
Summary:Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during treadmill walking is crucial for improving current paradigms. The objective of this study was to determine the kinematics and EMG responses to the pelvis and/or leg assistance force. Ten children with spastic CP were recruited to participate in this study. A controlled assistance force was applied to the pelvis and/or legs during stance and swing phase of gait through a custom designed robotic system during walking. Muscle activities and spatial-temporal gait parameters were measured at different loading conditions during walking. In addition, the spatial-temporal gait parameters during overground walking before and after treadmill training were also collected. Applying pelvis assistance improved step height and applying leg assistance improved step length during walking, but applying leg assistance also reduced muscle activation of ankle flexor during the swing phase of gait. In addition, step length and self-selected walking speed significantly improved after one session of treadmill training with combined pelvis and leg assistance.
ISSN:2090-5904
1687-5443