Dealing with trade-offs in destructive sampling designs for occupancy surveys.

Occupancy surveys should be designed to minimise false absences. This is commonly achieved by increasing replication or increasing the efficiency of surveys. In the case of destructive sampling designs, in which searches of individual microhabitats represent the repeat surveys, minimising false abse...

Full description

Bibliographic Details
Main Authors: Stefano Canessa, Geoffrey W Heard, Peter Robertson, Ian R K Sluiter
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4356509?pdf=render
id doaj-d3b22c9f4f664975b7a05fdff949e951
record_format Article
spelling doaj-d3b22c9f4f664975b7a05fdff949e9512020-11-25T02:11:56ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01103e012034010.1371/journal.pone.0120340Dealing with trade-offs in destructive sampling designs for occupancy surveys.Stefano CanessaGeoffrey W HeardPeter RobertsonIan R K SluiterOccupancy surveys should be designed to minimise false absences. This is commonly achieved by increasing replication or increasing the efficiency of surveys. In the case of destructive sampling designs, in which searches of individual microhabitats represent the repeat surveys, minimising false absences leads to an inherent trade-off. Surveyors can sample more low quality microhabitats, bearing the resultant financial costs and producing wider-spread impacts, or they can target high quality microhabitats were the focal species is more likely to be found and risk more severe impacts on local habitat quality. We show how this trade-off can be solved with a decision-theoretic approach, using the Millewa Skink Hemiergis millewae from southern Australia as a case study. Hemiergis millewae is an endangered reptile that is best detected using destructive sampling of grass hummocks. Within sites that were known to be occupied by H. millewae, logistic regression modelling revealed that lizards were more frequently detected in large hummocks. If this model is an accurate representation of the detection process, searching large hummocks is more efficient and requires less replication, but this strategy also entails destruction of the best microhabitats for the species. We developed an optimisation tool to calculate the minimum combination of the number and size of hummocks to search to achieve a given cumulative probability of detecting the species at a site, incorporating weights to reflect the sensitivity of the results to a surveyor's priorities. The optimisation showed that placing high weight on minimising volume necessitates impractical replication, whereas placing high weight on minimising replication requires searching very large hummocks which are less common and may be vital for H. millewae. While destructive sampling methods are sometimes necessary, surveyors must be conscious of the ecological impacts of these methods. This study provides a simple tool for identifying sampling strategies that minimise those impacts.http://europepmc.org/articles/PMC4356509?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Stefano Canessa
Geoffrey W Heard
Peter Robertson
Ian R K Sluiter
spellingShingle Stefano Canessa
Geoffrey W Heard
Peter Robertson
Ian R K Sluiter
Dealing with trade-offs in destructive sampling designs for occupancy surveys.
PLoS ONE
author_facet Stefano Canessa
Geoffrey W Heard
Peter Robertson
Ian R K Sluiter
author_sort Stefano Canessa
title Dealing with trade-offs in destructive sampling designs for occupancy surveys.
title_short Dealing with trade-offs in destructive sampling designs for occupancy surveys.
title_full Dealing with trade-offs in destructive sampling designs for occupancy surveys.
title_fullStr Dealing with trade-offs in destructive sampling designs for occupancy surveys.
title_full_unstemmed Dealing with trade-offs in destructive sampling designs for occupancy surveys.
title_sort dealing with trade-offs in destructive sampling designs for occupancy surveys.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2015-01-01
description Occupancy surveys should be designed to minimise false absences. This is commonly achieved by increasing replication or increasing the efficiency of surveys. In the case of destructive sampling designs, in which searches of individual microhabitats represent the repeat surveys, minimising false absences leads to an inherent trade-off. Surveyors can sample more low quality microhabitats, bearing the resultant financial costs and producing wider-spread impacts, or they can target high quality microhabitats were the focal species is more likely to be found and risk more severe impacts on local habitat quality. We show how this trade-off can be solved with a decision-theoretic approach, using the Millewa Skink Hemiergis millewae from southern Australia as a case study. Hemiergis millewae is an endangered reptile that is best detected using destructive sampling of grass hummocks. Within sites that were known to be occupied by H. millewae, logistic regression modelling revealed that lizards were more frequently detected in large hummocks. If this model is an accurate representation of the detection process, searching large hummocks is more efficient and requires less replication, but this strategy also entails destruction of the best microhabitats for the species. We developed an optimisation tool to calculate the minimum combination of the number and size of hummocks to search to achieve a given cumulative probability of detecting the species at a site, incorporating weights to reflect the sensitivity of the results to a surveyor's priorities. The optimisation showed that placing high weight on minimising volume necessitates impractical replication, whereas placing high weight on minimising replication requires searching very large hummocks which are less common and may be vital for H. millewae. While destructive sampling methods are sometimes necessary, surveyors must be conscious of the ecological impacts of these methods. This study provides a simple tool for identifying sampling strategies that minimise those impacts.
url http://europepmc.org/articles/PMC4356509?pdf=render
work_keys_str_mv AT stefanocanessa dealingwithtradeoffsindestructivesamplingdesignsforoccupancysurveys
AT geoffreywheard dealingwithtradeoffsindestructivesamplingdesignsforoccupancysurveys
AT peterrobertson dealingwithtradeoffsindestructivesamplingdesignsforoccupancysurveys
AT ianrksluiter dealingwithtradeoffsindestructivesamplingdesignsforoccupancysurveys
_version_ 1724911855143485440