Enhancer Runaway and the Evolution of Diploid Gene Expression.
Evidence is mounting that the evolution of gene expression plays a major role in adaptation and speciation. Understanding the evolution of gene regulatory regions is indeed an essential step in linking genotypes and phenotypes and in understanding the molecular mechanisms underlying evolutionary cha...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-11-01
|
Series: | PLoS Genetics |
Online Access: | http://europepmc.org/articles/PMC4642963?pdf=render |
id |
doaj-d38755376e8c4f19be7a6e995866098c |
---|---|
record_format |
Article |
spelling |
doaj-d38755376e8c4f19be7a6e995866098c2020-11-25T01:04:19ZengPublic Library of Science (PLoS)PLoS Genetics1553-73901553-74042015-11-011111e100566510.1371/journal.pgen.1005665Enhancer Runaway and the Evolution of Diploid Gene Expression.Frédéric FyonAurélie CailleauThomas LenormandEvidence is mounting that the evolution of gene expression plays a major role in adaptation and speciation. Understanding the evolution of gene regulatory regions is indeed an essential step in linking genotypes and phenotypes and in understanding the molecular mechanisms underlying evolutionary change. The common view is that expression traits (protein folding, expression timing, tissue localization and concentration) are under natural selection at the individual level. Here, we use a theoretical approach to show that, in addition, in diploid organisms, enhancer strength (i.e., the ability of enhancers to activate transcription) may increase in a runaway process due to competition for expression between homologous enhancer alleles. These alleles may be viewed as self-promoting genetic elements, as they spread without conferring a benefit at the individual level. They gain a selective advantage by getting associated to better genetic backgrounds: deleterious mutations are more efficiently purged when linked to stronger enhancers. This process, which has been entirely overlooked so far, may help understand the observed overrepresentation of cis-acting regulatory changes in between-species phenotypic differences, and sheds a new light on investigating the contribution of gene expression evolution to adaptation.http://europepmc.org/articles/PMC4642963?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Frédéric Fyon Aurélie Cailleau Thomas Lenormand |
spellingShingle |
Frédéric Fyon Aurélie Cailleau Thomas Lenormand Enhancer Runaway and the Evolution of Diploid Gene Expression. PLoS Genetics |
author_facet |
Frédéric Fyon Aurélie Cailleau Thomas Lenormand |
author_sort |
Frédéric Fyon |
title |
Enhancer Runaway and the Evolution of Diploid Gene Expression. |
title_short |
Enhancer Runaway and the Evolution of Diploid Gene Expression. |
title_full |
Enhancer Runaway and the Evolution of Diploid Gene Expression. |
title_fullStr |
Enhancer Runaway and the Evolution of Diploid Gene Expression. |
title_full_unstemmed |
Enhancer Runaway and the Evolution of Diploid Gene Expression. |
title_sort |
enhancer runaway and the evolution of diploid gene expression. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Genetics |
issn |
1553-7390 1553-7404 |
publishDate |
2015-11-01 |
description |
Evidence is mounting that the evolution of gene expression plays a major role in adaptation and speciation. Understanding the evolution of gene regulatory regions is indeed an essential step in linking genotypes and phenotypes and in understanding the molecular mechanisms underlying evolutionary change. The common view is that expression traits (protein folding, expression timing, tissue localization and concentration) are under natural selection at the individual level. Here, we use a theoretical approach to show that, in addition, in diploid organisms, enhancer strength (i.e., the ability of enhancers to activate transcription) may increase in a runaway process due to competition for expression between homologous enhancer alleles. These alleles may be viewed as self-promoting genetic elements, as they spread without conferring a benefit at the individual level. They gain a selective advantage by getting associated to better genetic backgrounds: deleterious mutations are more efficiently purged when linked to stronger enhancers. This process, which has been entirely overlooked so far, may help understand the observed overrepresentation of cis-acting regulatory changes in between-species phenotypic differences, and sheds a new light on investigating the contribution of gene expression evolution to adaptation. |
url |
http://europepmc.org/articles/PMC4642963?pdf=render |
work_keys_str_mv |
AT fredericfyon enhancerrunawayandtheevolutionofdiploidgeneexpression AT aureliecailleau enhancerrunawayandtheevolutionofdiploidgeneexpression AT thomaslenormand enhancerrunawayandtheevolutionofdiploidgeneexpression |
_version_ |
1725198881583529984 |