Regulator synthesis for the self-sensing control system of the proportional electromagnet dc based on reduced-order models

Modern DC proportional solenoid control systems use current values in magnetizing coils, or specialized sensors for position determination. These methods do not provide the possibility of accurate control and diagnostics, in case of aiming to the miniaturization of finished devices. In this article,...

Full description

Bibliographic Details
Main Authors: Shaykhutdinov Danil, Gorbatenko Nikolay, Manackov Yuri, Shirokov Konstantin
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201713204021
Description
Summary:Modern DC proportional solenoid control systems use current values in magnetizing coils, or specialized sensors for position determination. These methods do not provide the possibility of accurate control and diagnostics, in case of aiming to the miniaturization of finished devices. In this article, it is proposed to use methods of self-sensory identification of the moving element position based on the method of the full-scale-model experiment. The functioning of the method is based on the electromagnet model obtained by the reduced-order model approach. These models have an advantage in the calculation speed in comparison with finite element models and have an advantage in accuracy in comparison with analytical models. Ansys Electronics is used to obtain the model. The electromagnetic control system is proposed. Its model is implemented in the system Matlab Simulink. Synthesis of PID-regulator parameters using Matlab is performed. The results of a study of a control system for a given displacement with the aid of the obtained control system are presented.
ISSN:2261-236X