Eigenvalue problems for p(x)-Kirchhoff type equations

In this article, we study the nonlocal $p(x)$-Laplacian problem $$\displaylines{ -M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\Big) \hbox{div}(|\nabla u|^{p(x)-2}\nabla u)= \lambda|u|^{q(x)-2}u \quad \text{ in } \Omega,\cr u=0 \quad \text{on } \partial\Omega, }$$ By means of variation...

Full description

Bibliographic Details
Main Authors: Ghasem A. Afrouzi, Maryam Mirzapour
Format: Article
Language:English
Published: Texas State University 2013-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2013/253/abstr.html
id doaj-d38071daefab40f4888d0e6cc027a8fd
record_format Article
spelling doaj-d38071daefab40f4888d0e6cc027a8fd2020-11-24T20:54:52ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-11-012013253,110Eigenvalue problems for p(x)-Kirchhoff type equationsGhasem A. Afrouzi0Maryam Mirzapour1 Univ. of Mazandaran, Babolsar, Iran Univ. of Mazandaran, Babolsar, Iran In this article, we study the nonlocal $p(x)$-Laplacian problem $$\displaylines{ -M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\Big) \hbox{div}(|\nabla u|^{p(x)-2}\nabla u)= \lambda|u|^{q(x)-2}u \quad \text{ in } \Omega,\cr u=0 \quad \text{on } \partial\Omega, }$$ By means of variational methods and the theory of the variable exponent Sobolev spaces, we establish conditions for the existence of weak solutions.http://ejde.math.txstate.edu/Volumes/2013/253/abstr.htmlp(x)-Kirchhoff type equationsvariational methodsboundary value problems
collection DOAJ
language English
format Article
sources DOAJ
author Ghasem A. Afrouzi
Maryam Mirzapour
spellingShingle Ghasem A. Afrouzi
Maryam Mirzapour
Eigenvalue problems for p(x)-Kirchhoff type equations
Electronic Journal of Differential Equations
p(x)-Kirchhoff type equations
variational methods
boundary value problems
author_facet Ghasem A. Afrouzi
Maryam Mirzapour
author_sort Ghasem A. Afrouzi
title Eigenvalue problems for p(x)-Kirchhoff type equations
title_short Eigenvalue problems for p(x)-Kirchhoff type equations
title_full Eigenvalue problems for p(x)-Kirchhoff type equations
title_fullStr Eigenvalue problems for p(x)-Kirchhoff type equations
title_full_unstemmed Eigenvalue problems for p(x)-Kirchhoff type equations
title_sort eigenvalue problems for p(x)-kirchhoff type equations
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2013-11-01
description In this article, we study the nonlocal $p(x)$-Laplacian problem $$\displaylines{ -M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\Big) \hbox{div}(|\nabla u|^{p(x)-2}\nabla u)= \lambda|u|^{q(x)-2}u \quad \text{ in } \Omega,\cr u=0 \quad \text{on } \partial\Omega, }$$ By means of variational methods and the theory of the variable exponent Sobolev spaces, we establish conditions for the existence of weak solutions.
topic p(x)-Kirchhoff type equations
variational methods
boundary value problems
url http://ejde.math.txstate.edu/Volumes/2013/253/abstr.html
work_keys_str_mv AT ghasemaafrouzi eigenvalueproblemsforpxkirchhofftypeequations
AT maryammirzapour eigenvalueproblemsforpxkirchhofftypeequations
_version_ 1716793470696292352