Eigenvalue problems for p(x)-Kirchhoff type equations
In this article, we study the nonlocal $p(x)$-Laplacian problem $$\displaylines{ -M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\Big) \hbox{div}(|\nabla u|^{p(x)-2}\nabla u)= \lambda|u|^{q(x)-2}u \quad \text{ in } \Omega,\cr u=0 \quad \text{on } \partial\Omega, }$$ By means of variation...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2013-11-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2013/253/abstr.html |
id |
doaj-d38071daefab40f4888d0e6cc027a8fd |
---|---|
record_format |
Article |
spelling |
doaj-d38071daefab40f4888d0e6cc027a8fd2020-11-24T20:54:52ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-11-012013253,110Eigenvalue problems for p(x)-Kirchhoff type equationsGhasem A. Afrouzi0Maryam Mirzapour1 Univ. of Mazandaran, Babolsar, Iran Univ. of Mazandaran, Babolsar, Iran In this article, we study the nonlocal $p(x)$-Laplacian problem $$\displaylines{ -M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\Big) \hbox{div}(|\nabla u|^{p(x)-2}\nabla u)= \lambda|u|^{q(x)-2}u \quad \text{ in } \Omega,\cr u=0 \quad \text{on } \partial\Omega, }$$ By means of variational methods and the theory of the variable exponent Sobolev spaces, we establish conditions for the existence of weak solutions.http://ejde.math.txstate.edu/Volumes/2013/253/abstr.htmlp(x)-Kirchhoff type equationsvariational methodsboundary value problems |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ghasem A. Afrouzi Maryam Mirzapour |
spellingShingle |
Ghasem A. Afrouzi Maryam Mirzapour Eigenvalue problems for p(x)-Kirchhoff type equations Electronic Journal of Differential Equations p(x)-Kirchhoff type equations variational methods boundary value problems |
author_facet |
Ghasem A. Afrouzi Maryam Mirzapour |
author_sort |
Ghasem A. Afrouzi |
title |
Eigenvalue problems for p(x)-Kirchhoff type equations |
title_short |
Eigenvalue problems for p(x)-Kirchhoff type equations |
title_full |
Eigenvalue problems for p(x)-Kirchhoff type equations |
title_fullStr |
Eigenvalue problems for p(x)-Kirchhoff type equations |
title_full_unstemmed |
Eigenvalue problems for p(x)-Kirchhoff type equations |
title_sort |
eigenvalue problems for p(x)-kirchhoff type equations |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2013-11-01 |
description |
In this article, we study the nonlocal $p(x)$-Laplacian problem
$$\displaylines{
-M\Big(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\Big)
\hbox{div}(|\nabla u|^{p(x)-2}\nabla u)= \lambda|u|^{q(x)-2}u \quad
\text{ in } \Omega,\cr
u=0 \quad \text{on } \partial\Omega,
}$$
By means of variational methods and the theory of the variable
exponent Sobolev spaces, we establish conditions for the
existence of weak solutions. |
topic |
p(x)-Kirchhoff type equations variational methods boundary value problems |
url |
http://ejde.math.txstate.edu/Volumes/2013/253/abstr.html |
work_keys_str_mv |
AT ghasemaafrouzi eigenvalueproblemsforpxkirchhofftypeequations AT maryammirzapour eigenvalueproblemsforpxkirchhofftypeequations |
_version_ |
1716793470696292352 |