On Huppert's conjecture for F_4(2)
Let $G$ be a finite group and let $text{cd}(G)$ be the set of all complex irreducible character degrees of $G$. B. Huppert conjectured that if $H$ is a finite nonabelian simple group such that $text{cd}(G) =text{cd}(H)$, then $Gcong H times A$, where $A$ is an abelian group. In this paper, we verify...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Isfahan
2012-09-01
|
Series: | International Journal of Group Theory |
Subjects: | |
Online Access: | http://www.theoryofgroups.ir/?_action=showPDF&article=763&_ob=84125d4a5e2e7ac9630a1081299e34f0&fileName=full_text.pdf |
id |
doaj-d379c41122424beb8f731bfff87c2b60 |
---|---|
record_format |
Article |
spelling |
doaj-d379c41122424beb8f731bfff87c2b602020-11-24T20:40:26ZengUniversity of IsfahanInternational Journal of Group Theory2251-76502251-76692012-09-011319On Huppert's conjecture for F_4(2)Hung P Tong-VietThomas P WakefieldLet $G$ be a finite group and let $text{cd}(G)$ be the set of all complex irreducible character degrees of $G$. B. Huppert conjectured that if $H$ is a finite nonabelian simple group such that $text{cd}(G) =text{cd}(H)$, then $Gcong H times A$, where $A$ is an abelian group. In this paper, we verify the conjecture for $rm{F_4(2)}.$http://www.theoryofgroups.ir/?_action=showPDF&article=763&_ob=84125d4a5e2e7ac9630a1081299e34f0&fileName=full_text.pdfCharacter degreessimple groupsHuppert's Conjecture |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hung P Tong-Viet Thomas P Wakefield |
spellingShingle |
Hung P Tong-Viet Thomas P Wakefield On Huppert's conjecture for F_4(2) International Journal of Group Theory Character degrees simple groups Huppert's Conjecture |
author_facet |
Hung P Tong-Viet Thomas P Wakefield |
author_sort |
Hung P Tong-Viet |
title |
On Huppert's conjecture for F_4(2) |
title_short |
On Huppert's conjecture for F_4(2) |
title_full |
On Huppert's conjecture for F_4(2) |
title_fullStr |
On Huppert's conjecture for F_4(2) |
title_full_unstemmed |
On Huppert's conjecture for F_4(2) |
title_sort |
on huppert's conjecture for f_4(2) |
publisher |
University of Isfahan |
series |
International Journal of Group Theory |
issn |
2251-7650 2251-7669 |
publishDate |
2012-09-01 |
description |
Let $G$ be a finite group and let $text{cd}(G)$ be the set of all complex irreducible character degrees of $G$. B. Huppert conjectured that if $H$ is a finite nonabelian simple group such that $text{cd}(G) =text{cd}(H)$, then $Gcong H times A$, where $A$ is an abelian group. In this paper, we verify the conjecture for $rm{F_4(2)}.$ |
topic |
Character degrees simple groups Huppert's Conjecture |
url |
http://www.theoryofgroups.ir/?_action=showPDF&article=763&_ob=84125d4a5e2e7ac9630a1081299e34f0&fileName=full_text.pdf |
work_keys_str_mv |
AT hungptongviet onhuppertsconjectureforf42 AT thomaspwakefield onhuppertsconjectureforf42 |
_version_ |
1716826994463735808 |