Summary: | Abstract Background Insulin-producing cells differentiated from human mesenchymal stem cells demonstrate limited glucose-stimulated insulin secretion. Cytochrome P450 2J2 and its product epoxyeicosatrienoic acids regulate β-cell function in the human pancreas. The aim of this study is to explore the expression pattern of cytochrome P450 2J2 gene and 14, 15 epoxyeicosatrienoic level along the differentiation of human bone marrow-derived mesenchymal stem cells into insulin-producing cells. Results The differentiated insulin-producing cells express high levels of pancreatic duodenal homeobox-1 and insulin gene mRNA. It secretes increasing amounts of C-peptide in response to increasing glucose concentrations than undifferentiated cells. The differentiated insulin-producing cells were found to express reduced amounts of cytochrome P450 2J2 gene mRNA and significant low level of 14, 15 epoxyeicosatrienoic acid than the undifferentiated cells. A strong positive correlation between 14, 15 epoxyeicosatrienoic concentrations and C-peptide released from the differentiated insulin-producing cells was noticed. Conclusions Cytochrome P4502J2 and its product 14, 15 epoxyeicosatrienoic might affect insulin secretion from differentiated insulin-producing cells.
|