Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique
This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures—in this case, hexagonally arranged nanopillars—printed in a layer of directly photop...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-10-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/7/10/316 |
id |
doaj-d36fb96b5e814616a38d8313bf6d91f6 |
---|---|
record_format |
Article |
spelling |
doaj-d36fb96b5e814616a38d8313bf6d91f62020-11-25T01:03:31ZengMDPI AGNanomaterials2079-49912017-10-0171031610.3390/nano7100316nano7100316Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography TechniqueLoïc Berthod0Olga Shavdina1Isabelle Verrier2Thomas Kämpfe3Olivier Dellea4Francis Vocanson5Maxime Bichotte6Damien Jamon7Yves Jourlin8Lyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLaboratoire des Composants pour le Conversion de l’Energie (L2CE), Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et des nanomatériaux (CEA/LITEN), F-38054 Grenoble, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceThis paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures—in this case, hexagonally arranged nanopillars—printed in a layer of directly photopatternable sol-gel TiO2. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar’s cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.https://www.mdpi.com/2079-4991/7/10/316sol-gelTiO2sub-wavelength structurescolloidal photolithography |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Loïc Berthod Olga Shavdina Isabelle Verrier Thomas Kämpfe Olivier Dellea Francis Vocanson Maxime Bichotte Damien Jamon Yves Jourlin |
spellingShingle |
Loïc Berthod Olga Shavdina Isabelle Verrier Thomas Kämpfe Olivier Dellea Francis Vocanson Maxime Bichotte Damien Jamon Yves Jourlin Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique Nanomaterials sol-gel TiO2 sub-wavelength structures colloidal photolithography |
author_facet |
Loïc Berthod Olga Shavdina Isabelle Verrier Thomas Kämpfe Olivier Dellea Francis Vocanson Maxime Bichotte Damien Jamon Yves Jourlin |
author_sort |
Loïc Berthod |
title |
Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique |
title_short |
Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique |
title_full |
Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique |
title_fullStr |
Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique |
title_full_unstemmed |
Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique |
title_sort |
periodic tio2 nanostructures with improved aspect and line/space ratio realized by colloidal photolithography technique |
publisher |
MDPI AG |
series |
Nanomaterials |
issn |
2079-4991 |
publishDate |
2017-10-01 |
description |
This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures—in this case, hexagonally arranged nanopillars—printed in a layer of directly photopatternable sol-gel TiO2. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar’s cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems. |
topic |
sol-gel TiO2 sub-wavelength structures colloidal photolithography |
url |
https://www.mdpi.com/2079-4991/7/10/316 |
work_keys_str_mv |
AT loicberthod periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique AT olgashavdina periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique AT isabelleverrier periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique AT thomaskampfe periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique AT olivierdellea periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique AT francisvocanson periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique AT maximebichotte periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique AT damienjamon periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique AT yvesjourlin periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique |
_version_ |
1725200810131849216 |