Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique

This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures—in this case, hexagonally arranged nanopillars—printed in a layer of directly photop...

Full description

Bibliographic Details
Main Authors: Loïc Berthod, Olga Shavdina, Isabelle Verrier, Thomas Kämpfe, Olivier Dellea, Francis Vocanson, Maxime Bichotte, Damien Jamon, Yves Jourlin
Format: Article
Language:English
Published: MDPI AG 2017-10-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/7/10/316
id doaj-d36fb96b5e814616a38d8313bf6d91f6
record_format Article
spelling doaj-d36fb96b5e814616a38d8313bf6d91f62020-11-25T01:03:31ZengMDPI AGNanomaterials2079-49912017-10-0171031610.3390/nano7100316nano7100316Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography TechniqueLoïc Berthod0Olga Shavdina1Isabelle Verrier2Thomas Kämpfe3Olivier Dellea4Francis Vocanson5Maxime Bichotte6Damien Jamon7Yves Jourlin8Lyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLaboratoire des Composants pour le Conversion de l’Energie (L2CE), Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et des nanomatériaux (CEA/LITEN), F-38054 Grenoble, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceLyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d’Optique Graduate School, F-42023 Saint-Etienne, FranceThis paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures—in this case, hexagonally arranged nanopillars—printed in a layer of directly photopatternable sol-gel TiO2. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar’s cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.https://www.mdpi.com/2079-4991/7/10/316sol-gelTiO2sub-wavelength structurescolloidal photolithography
collection DOAJ
language English
format Article
sources DOAJ
author Loïc Berthod
Olga Shavdina
Isabelle Verrier
Thomas Kämpfe
Olivier Dellea
Francis Vocanson
Maxime Bichotte
Damien Jamon
Yves Jourlin
spellingShingle Loïc Berthod
Olga Shavdina
Isabelle Verrier
Thomas Kämpfe
Olivier Dellea
Francis Vocanson
Maxime Bichotte
Damien Jamon
Yves Jourlin
Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique
Nanomaterials
sol-gel
TiO2
sub-wavelength structures
colloidal photolithography
author_facet Loïc Berthod
Olga Shavdina
Isabelle Verrier
Thomas Kämpfe
Olivier Dellea
Francis Vocanson
Maxime Bichotte
Damien Jamon
Yves Jourlin
author_sort Loïc Berthod
title Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique
title_short Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique
title_full Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique
title_fullStr Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique
title_full_unstemmed Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique
title_sort periodic tio2 nanostructures with improved aspect and line/space ratio realized by colloidal photolithography technique
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2017-10-01
description This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures—in this case, hexagonally arranged nanopillars—printed in a layer of directly photopatternable sol-gel TiO2. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar’s cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.
topic sol-gel
TiO2
sub-wavelength structures
colloidal photolithography
url https://www.mdpi.com/2079-4991/7/10/316
work_keys_str_mv AT loicberthod periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique
AT olgashavdina periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique
AT isabelleverrier periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique
AT thomaskampfe periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique
AT olivierdellea periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique
AT francisvocanson periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique
AT maximebichotte periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique
AT damienjamon periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique
AT yvesjourlin periodictio2nanostructureswithimprovedaspectandlinespaceratiorealizedbycolloidalphotolithographytechnique
_version_ 1725200810131849216